codeforces #339 div 2 C. Peter and Snow Blower
http://codeforces.com/contest/614/problem/C
题意:给一个多边形和多边形外一定点,多边形绕定点旋转,问多边形扫过的面积。 思路:简单计算几何,找到多边形距离定点的最大和最小距离R和r,答案就是(R^2-R^2)*PI 需要注意的是:最大距离一定是从某点上取得,但是最小距离可能不在顶点上,而在某条边上。
/* ***********************************************
Author :111qqz
Created Time :2016年02月16日 星期二 16时58分59秒
File Name :code/cf/problem/614C.cpp
************************************************ */
1#include <cstdio>
2#include <cstring>
3#include <iostream>
4#include <algorithm>
5#include <vector>
6#include <queue>
7#include <set>
8#include <map>
9#include <string>
10#include <cmath>
11#include <cstdlib>
12#include <ctime>
13#define fst first
14#define sec second
15#define lson l,m,rt<<1
16#define rson m+1,r,rt<<1|1
17#define ms(a,x) memset(a,x,sizeof(a))
18typedef long long LL;
19#define pi pair < int ,int >
20#define MP make_pair
1using namespace std;
2const double eps = 1E-8;
3const int dx4[4]={1,0,0,-1};
4const int dy4[4]={0,-1,1,0};
5const int inf = 0x3f3f3f3f;
6const int N = 1E5+7;
7const double PI = acos(-1.0);
1int dblcmp(double d)
2{
3 return d<-eps?-1:d>eps;
4}
5struct point
6{
7 double x,y;
8 point (){}
9 point (double _x,double _y):
10 x(_x),y(_y){};
11 void input()
12 {
13 cin>>x>>y;
14 }
15 point sub(point p)
16 {
17 return point (x-p.x,y-p.y);
18 }
19 double dot(point p)
20 {
21 return x*p.x+y*p.y;
22 }
23 double distance2(point p)
24 {
25 return (x-p.x)*(x-p.x)+(y-p.y)*(y-p.y);
26 }
27 double distance(point p)
28 {
29 return hypot(x-p.x,y-p.y);
30 }
31 double det(point p)
32 {
33 return x*p.y-y*p.x;
34 }
35}p[N],q;
36double sqr(double x)
37{
38 return x*x;
39}
40struct line
41{
42 point a,b;
43 line(){}
44 line (point _a,point _b)
45 {
46 a = _a;
47 b = _b;
48 }
49 double length()
50 {
51 return a.distance(b);
52 }
1 double dispointtoline2(point p)
2 {
3 double res = sqr(fabs(p.sub(a).det(b.sub(a)))/length());
4// cout<<"res:"<<res<<endl;
5 return res;
6 }
7 double dispointtoseg2(point p)
8 {
9 if (dblcmp(p.sub(b).dot(a.sub(b)))<0||dblcmp(p.sub(a).dot(b.sub(a)))<0)
10 return min(p.distance2(a),p.distance2(b));
1 return dispointtoline2(p);
2 }
3}li[N];
1int n;
2int main()
3{
4 #ifndef ONLINE_JUDGE
5 freopen("code/in.txt","r",stdin);
6 #endif
1 cin>>n;
2 q.input();
3 double MIN = 99999999999999999;
4 double MAX = -1;
5 for ( int i = 1 ; i <= n ; i++)
6 {
7 p[i].input();
8 double d= p[i].distance2(q);
9 MAX = max(MAX,d);
10 }
1 for ( int i = 1 ; i <= n-1 ; i++)
2 {
3 li[i] = line(p[i],p[i+1]);
4 }
5 li[n]=line(p[n],p[1]);
6 for ( int i = 1 ; i <= n ; i++)
7 {
8 double d = li[i].dispointtoseg2(q);
9// cout<<li[i].a.x<<" "<<li[i].a.y<<" "<<li[i].b.x<<" "<<li[i].b.y<<endl;
10 // cout<<"d:"<<d<<endl;
11 MIN = min(MIN,d);
12 }
13// cout<<"MAX:"<<MAX<<" MIN:"<<MIN<<endl;
14 double ans = (MAX-MIN)*PI;
15 printf("%.18f\n",ans);
1 #ifndef ONLINE_JUDGE
2 fclose(stdin);
3 #endif
4 return 0;
5}