hdu 1575 Tr A (矩阵快速幂模板题)

http://acm.hdu.edu.cn/showproblem.php?pid=1575

题意:A为一方阵,求(A^k)73得到的矩阵的主对角线的和。

思路:矩阵快速幂。模板题。

/* ***********************************************
Author :111qqz
Created Time :2016年02月21日 星期日 10时28分33秒
File Name :code/hdu/1575.cpp
************************************************ */
 1#include <cstdio>
 2#include <cstring>
 3#include <iostream>
 4#include <algorithm>
 5#include <vector>
 6#include <queue>
 7#include <set>
 8#include <map>
 9#include <string>
10#include <cmath>
11#include <cstdlib>
12#include <ctime>
13#define fst first
14#define sec second
15#define lson l,m,rt<<1
16#define rson m+1,r,rt<<1|1
17#define ms(a,x) memset(a,x,sizeof(a))
18typedef long long LL;
19#define pi pair < int ,int >
20#define MP make_pair
 1using namespace std;
 2const double eps = 1E-8;
 3const int dx4[4]={1,0,0,-1};
 4const int dy4[4]={0,-1,1,0};
 5const int inf = 0x3f3f3f3f;
 6const int N=12;
 7const int MOD = 9973;
 8struct Mat
 9{
10    int mat[N][N];
11    void clear()
12    {
13	ms(mat,0);
14    }
15}A;
16int n,k;
1Mat operator * (Mat a,Mat b)
2{
3    Mat c;
4    c.clear();
5    for ( int i = 0 ; i < n ; i++)
6	for ( int j = 0 ; j < n ; j++)
7	    for (int k = 0 ; k < n ; k++)
8		c.mat[i][j] =(c.mat[i][j]+a.mat[i][k]*b.mat[k][j])%MOD;
    return c;
 1}
 2Mat operator ^ (Mat a,int b)
 3{
 4    Mat c;
 5    for ( int i = 0 ; i < n ; i++)
 6	for ( int j = 0 ; j < n ; j++ )
 7	    c.mat[i][j]=(i==j);
 8    while (b)
 9    {
10	if (b&1) c = c * a;
11	b = b>>1;
12	a = a * a;
13    }
14    return c;
15}
16int main()
17{
18	#ifndef  ONLINE_JUDGE 
19	freopen("code/in.txt","r",stdin);
20  #endif
1	int T;
2	scanf("%d",&T);
3	while (T--)
4	{
5	    scanf("%d %d",&n,&k);
6	    A.clear();
7	    for ( int i = 0 ; i < n ; i++)
8		for ( int j = 0 ; j < n; j ++)
9		    scanf("%d",&A.mat[i][j]);
1	    Mat res;
2	    res.clear();
3	    res = A^k;
	    int ans = 0 ;
	    for ( int i = 0 ;  i < n ;i++) ans = (ans +res.mat[i][i])%MOD;

	    printf("%d\n",ans);

	}
1  #ifndef ONLINE_JUDGE  
2  fclose(stdin);
3  #endif
4    return 0;
5}