hdu 5626 Clarke and points (曼哈顿距离变换,拆点)
http://acm.split.hdu.edu.cn/showproblem.php?pid=5626
题意:给出n(1E6)个点的二维坐标,问距离最远的两个点的距离是多少。
思路:对曼哈顿距离进行变换。
先看曼哈顿距离的定义
|x1−x2|+|y1−y2|
拆绝对值
x1−x2+y1−y2或x1−x2+y2−y1
x2−x1+y1−y2或x2−x1+y2−y1
即|x1+y1−(x2+y2)|或|x1−y1−(x2−y2)|
设x1+y1为x′,x1−y1为y′
则|x1′−x2′|或|y1′−y2′|
所以原要求1转化为
max(|x1′−x2′|,|y1′−y2′|)<=c
然后分别对x,y排序即可..最大的距离一定是y[n-1]-y[0]或者x[n-1]-x[0]
/* ***********************************************
Author :111qqz
Created Time :2016年02月24日 星期三 23时42分15秒
File Name :code/hdu/5626.cpp
************************************************ */
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#define fst first
#define sec second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ms(a,x) memset(a,x,sizeof(a))
typedef long long LL;
#define pi pair < int ,int >
#define MP make_pair
using namespace std;
const double eps = 1E-8;
const int dx4[4]={1,0,0,-1};
const int dy4[4]={0,-1,1,0};
const int inf = 0x3f3f3f3f;
const int N=1E6+7;
LL seed;
int n;
int x[N],y[N];
inline LL rand(LL l,LL r)
{
static LL mo =1E9+7,g=78125;
return l+((seed*=g)%=mo)%(r-l+1);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("code/in.txt","r",stdin);
#endif
ios::sync_with_stdio(false);
int T;
cin>>T;
while (T--)
{
cin>>n>>seed;
for ( int i = 0 ; i < n ; i++)
{
int xx,yy;
xx = rand(-1000000000,1000000000);
yy = rand(-1000000000,1000000000);
x[i] = xx-yy;
y[i] = xx+yy;
}
sort(x,x+n);
sort(y,y+n);
int ans = -1;
ans = max(ans,y[n-1]-y[0]);
ans = max(ans,x[n-1]-x[0]);
cout<<ans<<endl;
}
#ifndef ONLINE_JUDGE
fclose(stdin);
#endif
return 0;
}