poj 2356 Find a multiple (剩余类,抽屉原理)
http://poj.org/problem?id=2356
题意:有n个数,从中选取若干个(1..n),和能被n整除。问是否有解,无解输出0,有解的话,输出个数以及选择的ai
由抽屉原理可知一定有解: 做一个带模的前缀和 sum[i]=(sum[i-1]+a[i])%n n个数,sum[i]最多有n种。 如果某个sum[i]为0,那么表示从1到i的和能被n整除。 如果所有的sum[i]不为0,那么一共有n个sum[i],n-1个值(1..n-1),一定有sum[i]==sumj 那么a[i]到a[j]的和一定能被n整除。
/*************************************************************************
	> File Name: code/poj/2356.cpp
	> Author: 111qqz
	> Email: rkz2013@126.com 
	> Created Time: 2015年08月21日 星期五 13时43分41秒
 ************************************************************************/
 1#include<iostream>
 2#include<iomanip>
 3#include<cstdio>
 4#include<algorithm>
 5#include<cmath>
 6#include<cstring>
 7#include<string>
 8#include<map>
 9#include<set>
10#include<queue>
11#include<vector>
12#include<stack>
13#define y0 abc111qqz
14#define y1 hust111qqz
15#define yn hez111qqz
16#define j1 cute111qqz
17#define tm crazy111qqz
18#define lr dying111qqz
19using namespace std;
20#define REP(i, n) for (int i=0;i<int(n);++i)  
21typedef long long LL;
22typedef unsigned long long ULL;
23const int inf = 0x3f3f3f3f;
24const int N=2E4+7;
25int a[N];
26int sum[N];
27int n;
28int p[N];
29int main()
30{
31    scanf("%d",&n);
32    sum[0]= 0;
33    for ( int i = 1  ; i <= n ; i++){
34	scanf("%d",&a[i]);
35	sum[i] = (sum[i-1] + a[i])%n;
36    }
37    memset(p,0,sizeof(p));
38    for ( int i = 1 ; i <= n ; i++){
39	if (sum[i]==0){
40	    printf("%d\n",i);
41	    for ( int j = 1 ; j <= i ; j++){
42		printf("%d\n",j);
43	    }
44	    break;
45	}
46	if (p[sum[i]]){
47	   // cout<<"111qqz"<<endl;
48	    printf("%d\n",i-p[sum[i]]);
49	    for ( int j = p[sum[i]]+1 ; j <= i ; j++){
50		printf("%d\n",j);
51	    }
52	    break;
53	}
54	    p[sum[i]] =  i;
    }
  
	return 0;
}