BZOJ 1649: [Usaco2006 Dec]Cow Roller Coaster (dp,类似01背包)
Time Limit: 5 Sec Memory Limit: 64 MB Submit: 504 Solved: 265 [Submit][Status][Discuss]
Description
The cows are building a roller coaster! They want your help to design as fun a roller coaster as possible, while keeping to the budget. The roller coaster will be built on a long linear stretch of land of length L (1 <= L <= 1,000). The roller coaster comprises a collection of some of the N (1 <= N <= 10,000) different interchangable components. Each component i has a fixed length Wi (1 <= Wi <= L). Due to varying terrain, each component i can be only built starting at location Xi (0 <= Xi <= L-Wi). The cows want to string together various roller coaster components starting at 0 and ending at L so that the end of each component (except the last) is the start of the next component. Each component i has a "fun rating" Fi (1 <= Fi <= 1,000,000) and a cost Ci (1 <= Ci <= 1000). The total fun of the roller coster is the sum of the fun from each component used; the total cost is likewise the sum of the costs of each component used. The cows' total budget is B (1 <= B <= 1000). Help the cows determine the most fun roller coaster that they can build with their budget.
奶牛们正打算造一条过山车轨道.她们希望你帮忙,找出最有趣,但又符合预算的方案. 过山车的轨道由若干钢轨首尾相连,由x=0处一直延伸到X=L(1≤L≤1000)处.现有N(1≤N≤10000)根钢轨,每根钢轨的起点Xi(0≤Xi≤L- Wi),长度wi(l≤Wi≤L),有趣指数Fi(1≤Fi≤1000000),成本Ci(l≤Ci≤1000)均己知.请确定一种最优方案,使得选用的钢轨的有趣指数之和最大,同时成本之和不超过B(1≤B≤1000).
Input
Line 1: Three space-separated integers: L, N and B.
Lines 2..N+1: Line i+1 contains four space-separated integers, respectively: Xi, Wi, Fi, and Ci.
第1行输入L,N,B,接下来N行,每行四个整数Xi,wi,Fi,Ci.
Output
- Line 1: A single integer that is the maximum fun value that a roller-coaster can have while staying within the budget and meeting all the other constraints. If it is not possible to build a roller-coaster within budget, output -1.
Sample Input
5 6 10 0 2 20 6 2 3 5 6 0 1 2 1 1 1 1 3 1 2 5 4 3 2 10 2
Sample Output
17 选用第3条,第5条和第6条钢轨
思路:一个类似01dp的背包
dp[i][j]表示长度为i,成本为j的最大有趣指数。
这个想到了。。
然后转移没有推出来。。。
因为潜意识里总觉得循环的变量是要和dp数组的两维一致。。。
实际上根本无关好吗23333
初始化数组dp为-1,dp[0][0]=0
为-1是因为无解输出-1,这样就不用特别处理了。。。
转移方程为:f[i][end[a]]=max{f[i-cost[a][begin[a]]+w[a]} 当f[i-cost[a][begin[a]]可行时
参考了这篇题解:
/* ***********************************************
Author :111qqz
Created Time :2016年04月11日 星期一 16时43分19秒
File Name :code/bzoj/1649.cpp
************************************************ */
1#include <cstdio>
2#include <cstring>
3#include <iostream>
4#include <algorithm>
5#include <vector>
6#include <queue>
7#include <set>
8#include <map>
9#include <string>
10#include <cmath>
11#include <cstdlib>
12#include <ctime>
13#define fst first
14#define sec second
15#define lson l,m,rt<<1
16#define rson m+1,r,rt<<1|1
17#define ms(a,x) memset(a,x,sizeof(a))
18typedef long long LL;
19#define pi pair < int ,int >
20#define MP make_pair
1using namespace std;
2const double eps = 1E-8;
3const int dx4[4]={1,0,0,-1};
4const int dy4[4]={0,-1,1,0};
5const int inf = 0x3f3f3f3f;
6const int N=1E4+3;
7int n,l,b;
8int dp[1005][1005];
9struct node
10{
11 int l,r;
12 int w;
13 int f;
14 int c;
1 bool operator < (node b) const
2 {
3 if (l==b.l) return r<b.r;
4 return l<b.l;
5 }
1}p[N];
2int main()
3{
4 #ifndef ONLINE_JUDGE
5 freopen("code/in.txt","r",stdin);
6 #endif
1 scanf("%d %d %d",&l,&n,&b);
2 for ( int i = 1 ; i <= n ; i++)
3 {
4 scanf("%d %d %d %d",&p[i].l,&p[i].w,&p[i].f,&p[i].c);
5 p[i].r = p[i].l + p[i].w;
6 }
sort(p+1,p+n+1);
1 ms(dp,-1);
2 dp[0][0] = 0;
3 for ( int i = 1 ; i <= n ; i++)
4 {
5 for ( int j = p[i].c ; j <= b ; j++)
6 if (dp[p[i].l][j-p[i].c]!=-1) dp[p[i].r][j]=max(dp[p[i].r][j],dp[p[i].l][j-p[i].c]+p[i].f);
7 }
8 int ans = -1 ; //无解输出-1
9 for ( int i = 1 ;i <= b ; i++) ans = max(ans,dp[l][i]);
10 printf("%d\n",ans);
1 #ifndef ONLINE_JUDGE
2 fclose(stdin);
3 #endif
4 return 0;
5}