poj 1330 Nearest Common Ancestors (lca,用dfs+rmq在线求解)
题意:给出一棵树,求两点的lca. 思路:将lca转化成rmq在线求解。
代码部分参考了:参考代码
感觉实现得很巧妙。。。 把树存成了有向图,dfs遇到的时候一定是第一次遇到,此时更新R. 然后第二次遇到某个点就是在回溯的时候了。
/* ***********************************************
Author :111qqz
Created Time :2016年05月19日 星期四 15时05分31秒
File Name :code/poj/1330.cpp
************************************************ */
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#define fst first
#define sec second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ms(a,x) memset(a,x,sizeof(a))
typedef long long LL;
#define pi pair < int ,int >
#define MP make_pair
using namespace std;
const double eps = 1E-8;
const int dx4[4]={1,0,0,-1};
const int dy4[4]={0,-1,1,0};
const int inf = 0x3f3f3f3f;
const int N=1E4+7;
vector <int>edge[N];
int n;
int in[N];
int cur;
int E[2*N];
int R[N];
int depth[2*N];
int dp[2*N][16];
void dfs ( int u,int dep)
{
// cout<<"u:"<<u<<" dep:"<<dep<<endl;
cur++;
E[cur] = u;
depth[cur] = dep;
R[u] = cur; //有向图存的话,在这里访问的一定是第一次经过。
int siz = edge[u].size();
for ( int i = 0 ; i < siz ; i++)
{
int v = edge[u][i];
dfs(v,dep+1);
cur++; //返回时还经过一次。
E[cur] = u ;
depth[cur] = dep;
}
}
int _min(int l,int r)
{
if (depth[l]<depth[r]) return l;
return r;
}
void rmq_init()
{
for ( int i = 1 ; i <= 2*n+2 ; i++) dp[i][0] = i;
for ( int j = 1 ; (1<<j) <= 2*n+2 ; j++ )
for ( int i = 1; i + (1<<j)-1 <=2*n+2 ; i++)
dp[i][j] = _min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
int rmq_min( int l,int r)
{
if (l>r) swap(l,r);
int k = 0 ;
while (1<<(k+1)<=r-l+1) k++;
return _min(dp[l][k],dp[r-(1<<k)+1][k]);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("code/in.txt","r",stdin);
#endif
int T;
cin>>T;
while (T--)
{
scanf("%d",&n);
ms(in,0);
ms(E,0);
ms(R,0);
ms(depth,0);
for ( int i = 1 ; i <= n ; i++) edge[i].clear();
for ( int i = 1 ; i <= n-1 ; i++)
{
int u,v;
scanf("%d %d",&u,&v);
edge[u].push_back(v);
in[v]++;
}
int root;
for ( int i = 1 ; i <= n ; i++) if (in[i]==0) root = i;
cur = 0 ;
dfs(root,0);
rmq_init();
int x,y;
scanf("%d %d",&x,&y);
printf("%d\n",E[rmq_min(R[x],R[y])]);
}
#ifndef ONLINE_JUDGE
fclose(stdin);
#endif
return 0;
}