hdu 1573 X问题 (exgcd求解一般线性同余方程组解的个数)
题意:求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod a[i] = b[i], … (0 < a[i] <= 10)。
思路:先用扩展欧几里得算法(excrt)解一般同余方程求出一个特解R,然后通解R' = R + k * LCM(a1..am)
注意一些特殊情况,如果无解输出0,如果n小于最小的正整数的R也输出0,
否则答案为(n-R)/M + 1
/* ***********************************************
Author :111qqz
Created Time :Sat 15 Oct 2016 03:31:09 PM CST
File Name :code/hdu/1573.cpp
************************************************ */
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#define fst first
#define sec second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ms(a,x) memset(a,x,sizeof(a))
typedef long long LL;
#define pi pair < int ,int >
#define MP make_pair
using namespace std;
const double eps = 1E-8;
const int dx4[4]={1,0,0,-1};
const int dy4[4]={0,-1,1,0};
const int inf = 0x3f3f3f3f;
const int N =15;
LL a[N],r[N];
LL nn;
int m;
LL exgcd(LL a,LL b,LL &x,LL &y)
{
if (b==0)
{
x = 1;
y = 0 ;
return a;
}
LL ret = exgcd( b, a%b,y,x);
y-=x*(a/b);
return ret;
}
LL ex_crt(LL *m,LL *r,int n)
{
LL M = m[1] , R = r[1],x,y,gcd;
for ( int i = 2 ; i <= n ; i++)
{
gcd = exgcd(M,m[i],x,y);
if ((r[i]-R)%gcd) return 0;
LL gx = m[i]/gcd;
x = x*(r[i]-R)/gcd;
x %=gx;
R += x*M;
M = M / gcd * m[i];
R%=M;
}
if (R<=0) R+=M;
if (nn<R) return 0;
return (nn-R)/M + 1;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("code/in.txt","r",stdin);
#endif
int T;
cin>>T;
while (T--)
{
scanf("%lld %d",&nn,&m);
for ( int i = 1 ; i <= m ; i++) scanf("%lld",&a[i]);
for ( int i = 1 ; i <= m ; i++) scanf("%lld",&r[i]);
LL res = ex_crt(a,r,m);
printf("%lld\n",res);
}
#ifndef ONLINE_JUDGE
fclose(stdin);
#endif
return 0;
}