hdu 3977 Evil teacher (斐波那契数列循环节)
题意:f[0] = 1,f[1] = 1,f[i] = f[i-1] + f[i-2] (i>=2),问最小的m满足f[n]%p==f[n+m]%p
思路:求斐波那契数列循环节。
参考了Acdreamer的博客_Fib数模n的循环节
对于一个正整数n,我们求Fib数模n的循环节的长度的方法如下:(1)把n素因子分解,即
(2)分别计算Fib数模每个 的循环节长度,假设长度分别是
(3)那么Fib模n的循环节长度
从上面三个步骤看来,貌似最困难的是第二步,那么我们如何求Fib模 的循环节长度呢?
这里有一个优美的定理:Fib数模 的最小循环节长度等于 ,其中 表示Fib数模素数 的最小循环节长度。可以看出我们现在最重要的就是求
对于求 我们利用如下定理:
如果5是模 的二次剩余,那么循环节的的长度是 的因子,否则,循环节的长度是 的因子。
顺便说一句,对于小于等于5的素数,我们直接特殊判断,loop(2)=3,loop(3)=8,loop(5)=20。
那么我们可以先求出所有的因子,然后用矩阵快速幂来一个一个判断,这样时间复杂度不会很大。
这道题是模板题。博客中的模板代码很好理解...
换成了自己比较熟悉的矩阵构造方式,以及代码风格。
需要注意的是下标是从0开始的,当验证k是否为循环节的时候,应该验证f[k]和f[k+1]
/* ***********************************************
Author :111qqz
Created Time :Mon 31 Oct 2016 03:54:15 AM CST
File Name :code/hdu/3977.cpp
************************************************ */
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#define fst first
#define sec second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ms(a,x) memset(a,x,sizeof(a))
typedef long long LL;
#define pi pair < int ,int >
#define MP make_pair
using namespace std;
const double eps = 1E-8;
const int dx4[4]={1,0,0,-1};
const int dy4[4]={0,-1,1,0};
const int inf = 0x3f3f3f3f;
LL P;
struct Mat
{
LL mat[2][2];
void clear()
{
ms(mat,0);
}
}M,M1;
Mat mul (Mat a,Mat b,LL mod)
{
Mat c;
c.clear();
for ( int i = 0 ; i < 2 ; i++)
for ( int j = 0 ; j < 2 ; j++)
for ( int k = 0 ; k < 2 ; k++)
c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j]%mod)%mod;
return c;
}
Mat mat_ksm(Mat a,LL b,LL mod)
{
Mat res;
res.clear();
for ( int i = 0 ; i < 2 ; i++) res.mat[i][i] = 1;
while (b>0)
{
if (b&1) res = mul(res,a,mod);
b = b >> 1LL;
a = mul(a,a,mod);
}
return res;
}
LL gcd(LL a,LL b)
{
return b?gcd(b,a%b):a;
}
const int N = 1E6+7;
bool prime[N];
int p[N];
void isprime() //一个普通的筛
{
int cnt = 0 ;
ms(prime,true);
for ( int i = 2 ; i < N ; i++)
{
if (prime[i])
{
p[cnt++] = i ;
for ( int j = i+i ; j < N ; j+=i) prime[j] = false;
}
}
}
LL ksm( LL a,LL b,LL mod)
{
LL res = 1;
while (b>0)
{
if (b&1) res = (res * a) % mod;
b = b >> 1LL;
a = a * a % mod;
}
return res;
}
LL legendre(LL a,LL p) //勒让德符号,判断二次剩余
{
if (ksm(a,(p-1)>>1,p)==1) return 1;
return -1;
}
LL pri[N],num[N];//分解质因数的底数和指数。
int cnt; //质因子的个数
void solve(LL n,LL pri[],LL num[])
{
cnt = 0 ;
for ( int i = 0 ; p[i] * p[i] <= n ; i++)
{
if (n%p[i]==0)
{
int Num = 0 ;
pri[cnt] = p[i];
while (n%p[i]==0)
{
Num++;
n/=p[i];
}
num[cnt] = Num;
cnt++;
}
}
if (n>1)
{
pri[cnt] = n;
num[cnt] = 1;
cnt++;
}
}
LL fac[N];
int cnt2; //n的因子的个数
void get_fac(LL n)//得到n的所有因子
{
cnt2 = 0 ;
for (int i = 1 ; i*i <= n ; i++)
{
if (n%i==0)
{
if (i*i!=n)
{
fac[cnt2++] = i ;
fac[cnt2++] = n/i;
}
else fac[cnt2++] = i;
}
}
}
LL find_loop(LL n)
{
solve(n,pri,num);
LL ans = 1;
for ( int i = 0 ; i < cnt ; i++)
{
LL rec = 1;
if (pri[i]==2) rec = 3;
else if (pri[i]==3) rec = 8;
else if (pri[i]==5) rec = 20;
else
{
if (legendre(5,pri[i])==1)
get_fac(pri[i]-1);
else get_fac(2*pri[i]+2);
sort(fac,fac+cnt2);
for ( int j = 0 ; j < cnt2 ; j++) //挨个验证因子
{
Mat tmp = mat_ksm(M,fac[j],pri[i]); //下标从0开始,验证fac[j]为循环节,应该看fib[0]==fib[fac[j]]和fib[1]==fib[fac[j]+1]是否成立
tmp = mul(tmp,M1,pri[i]);
if (tmp.mat[0][0]==1&&tmp.mat[1][0]==1)
{
rec = fac[j];
break;
}
}
}
for ( int j = 1 ; j < num[i] ; j++)
rec *=pri[i];
ans = ans / gcd(ans,rec) * rec;
}
return ans;
}
void init()
{
M.clear();
M.mat[0][1] = M.mat[1][0] = M.mat[1][1] = 1;
M1.clear();
M1.mat[0][0] = M1.mat[1][0] = 1;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("code/in.txt","r",stdin);
#endif
int T;
int cas = 0 ;
isprime();
scanf("%d",&T);
while (T--)
{
init();
scanf("%lld",&P);
printf("Case #%d: ",++cas);
LL ret = find_loop(P);
printf("%lld\n",ret);
}
#ifndef ONLINE_JUDGE
fclose(stdin);
#endif
return 0;
}