hdu 4291 A Short problem (矩阵快速幂+广义斐波那契循环节||暴力找循环节)

题目链接

题意:

Given n (1 <= n <= 1018), You should solve for

g(g(g(n))) mod 109 + 7 where

g(n) = 3g(n - 1) + g(n - 2)

g(1) = 1

g(0) = 0思路:找循环节。首先由于模数固定,可以暴力一下找到循环节。

得到1E9+7的循环节是222222224,222222224的循环节是183120.

然后三次矩阵快速幂就行了。

需要注意每次都要判断那一层的n是否为0和1。

暴力解法:

/* ***********************************************
Author :111qqz
Created Time :Mon 31 Oct 2016 02:47:01 PM CST
File Name :code/hdu/4291.cpp
************************************************ */
 1#include <cstdio>
 2#include <cstring>
 3#include <iostream>
 4#include <algorithm>
 5#include <vector>
 6#include <queue>
 7#include <set>
 8#include <map>
 9#include <string>
10#include <cmath>
11#include <cstdlib>
12#include <ctime>
13#define fst first
14#define sec second
15#define lson l,m,rt<<1
16#define rson m+1,r,rt<<1|1
17#define ms(a,x) memset(a,x,sizeof(a))
18typedef long long LL;
19#define pi pair < int ,int >
20#define MP make_pair
 1using namespace std;
 2const double eps = 1E-8;
 3const int dx4[4]={1,0,0,-1};
 4const int dy4[4]={0,-1,1,0};
 5const int inf = 0x3f3f3f3f;
 6const LL loop0 = 1E9+7;
 7const LL loop1=222222224,loop2=183120; //暴力得到每一层的循环节。
 8/*
 9LL find_loop(LL mod)
10{
11    LL a,b,c;
12    a = 0 ;
13    b = 1 ;
14    for ( int i = 2 ; ; i++)
15    {
16	c = (a+3*b%mod)% mod;
17	a = b;
18	b = c; 
19//	cout<<"a:"<<a<<" b:"<<b<<endl;
20	if (a==0&&b==1)
21	{
22	    return i-1; // i的时候得到第i项,判断循环的时候是判断g[i-1]==g[0]&&g[i]==g[1],所以循环节长度是i-1;
23	}
24    }
25}*/
26LL n;
27struct Mat
28{
29    LL mat[2][2];
30    void clear()
31    {
32	ms(mat,0);
33    }
34    void out()
35    {
36	cout<<mat[0][0]<<" "<<mat[0][1]<<endl;
37	cout<<mat[1][0]<<" "<<mat[1][1]<<endl;
38	cout<<endl;
39    }
40}M,M1;
41Mat mul(Mat a,Mat b,LL MOD)
42{
43    Mat c;
44    c.clear();
45    for ( int i = 0 ; i < 2 ; i++)
46	for  ( int j = 0 ; j < 2 ; j++)
47	    for ( int k = 0 ; k < 2 ; k++)
48		c.mat[i][j] = (c.mat[i][j] + a.mat[i][k]*b.mat[k][j]%MOD)%MOD;
49    return c;
50}
51Mat power(Mat a,LL b,LL MOD)
52{
53    Mat res;
54    res.clear();
55    for ( int i = 0 ;i < 2 ; i++) res.mat[i][i] = 1;
56    while (b>0)
57    {
58	if (b&1) res = mul(res,a,MOD);
59	b = b>>1LL;
60	a = mul(a,a,MOD);
61    }
62    return res;
63}
64void Mat_init()
65{
66    M.clear();
67    M.mat[0][1] = 1;
68    M.mat[1][0] = 1;
69    M.mat[1][1] = 3;
70    M1.clear();
71    M1.mat[1][0] = 1;
72}
73int main()
74{
75	#ifndef  ONLINE_JUDGE 
76	freopen("code/in.txt","r",stdin);
77  #endif
78	/*
79	loop1 = find_loop(loop0);
80	printf("loop1:%lld\n",loop1);
81	loop2 = find_loop(loop1);
82	printf("loop2:%lld\n",loop2);
83	*/
84	Mat_init();
85	while (scanf("%lld\n",&n)!=EOF)
86	{
87	    if (n==0)
88	    {
89		puts("0");
90		continue;
91	    }
92	    if (n==1)
93	    {
94		puts("1");
95		continue;
96	    }
1	    LL cur = n;
2	    Mat ans;
3	    ans = power(M,cur-1,loop2);
4	    ans = mul(ans,M1,loop2);
5	    cur = ans.mat[1][0];
6	    if (cur!=0&&cur!=1) //三次快速幂,每次都要记得判断初始项。
7	    {
 1		ans = power(M,cur-1,loop1);
 2		ans = mul(ans,M1,loop1);
 3		cur = ans.mat[1][0];
 4	    }
 5	    if (cur!=0&&cur!=1)
 6	    {
 7		ans = power(M,cur-1,loop0);
 8		ans = mul(ans,M1,loop0);
 9		cur = ans.mat[1][0];
10	    }
11	    printf("%lld\n",cur);
12	}
1#ifndef ONLINE_JUDGE  
2	fclose(stdin);
3#endif
4	return 0;
5}

再来一个比较一般的做法:

参考递推式循环节

Acdreamer的博客_广义Fibonacci数列找循环节

摘重点:

今天早上起来后,看了下代码,为什么要判断5是不是p的模二次剩余呢,为什么是5呢

想了想,5对于斐波那契数列来讲,不就是x^2=x+1的delta么,那么这题的递推式是x^2=3x+1,delta=33+4=13,然后我就把勒让德符号判断二次剩余那里改成13,然后对应的暴力出13及13以内的素数对应的循环节,交了一发,AC了

      所以综上所述:

是模 的二次剩余时,枚举 的因子

是模 的二次非剩余时,枚举 的因子

对于第二种非剩余的情况,理论上是枚举(p+1)(p-1)的因子,实际上常常只是枚举2(p+1)的因子*

对于c=5的情况,是有定理:

screenshot-from-2016-10-31-21-23-45

不过对于c不等于5的情况。。。该结论是否一定成立呢...感觉不是很好证,求指教。

/* ***********************************************
Author :111qqz
Created Time :Mon 31 Oct 2016 08:22:17 PM CST
File Name :code/hdu/4291_2.cpp
************************************************ */
 1#include <cstdio>
 2#include <cstring>
 3#include <iostream>
 4#include <algorithm>
 5#include <vector>
 6#include <queue>
 7#include <set>
 8#include <map>
 9#include <string>
10#include <cmath>
11#include <cstdlib>
12#include <ctime>
13#define fst first
14#define sec second
15#define lson l,m,rt<<1
16#define rson m+1,r,rt<<1|1
17#define ms(a,x) memset(a,x,sizeof(a))
18typedef long long LL;
19#define pi pair < int ,int >
20#define MP make_pair
  1using namespace std;
  2const double eps = 1E-8;
  3const int dx4[4]={1,0,0,-1};
  4const int dy4[4]={0,-1,1,0};
  5const int inf = 0x3f3f3f3f;
  6struct Mat
  7{
  8    LL mat[2][2];
  9    void clear()
 10    {
 11	ms(mat,0);
 12    }
 13}M,M1;
 14Mat mul (Mat a,Mat b,LL mod)
 15{
 16    Mat c;
 17    c.clear();
 18    for ( int i = 0 ; i < 2 ; i++)
 19	for ( int j = 0 ; j < 2 ; j++)
 20	    for ( int k  = 0 ; k < 2 ; k++)
 21		c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j]%mod)%mod;
 22    return c;
 23}
 24Mat mat_ksm(Mat a,LL b,LL mod)
 25{
 26    Mat res;
 27    res.clear();
 28    for ( int i = 0 ; i < 2 ; i++) res.mat[i][i] = 1;
 29    while (b>0)
 30    {
 31	if (b&1) res = mul(res,a,mod);
 32	b = b >> 1LL;
 33	a = mul(a,a,mod);
 34    }
 35    return res;
 36}
 37LL gcd(LL a,LL b)
 38{
 39    return b?gcd(b,a%b):a;
 40}
 41const int N = 1E6+7;
 42bool prime[N];
 43int p[N];
 44void isprime() //一个普通的筛
 45{
 46    int cnt = 0 ;
 47    ms(prime,true);
 48    for ( int i = 2 ; i < N ; i++)
 49    {
 50	if (prime[i])
 51	{
 52	    p[cnt++] = i ;
 53	    for ( int j = i+i ; j < N ; j+=i) prime[j] = false;
 54	}
 55    }
 56}
 57LL ksm( LL a,LL b,LL mod)
 58{
 59   LL res = 1;
 60   while (b>0)
 61   {
 62       if (b&1) res = (res * a) % mod;
 63       b = b >> 1LL;
 64       a = a * a % mod;
 65   }
 66   return res;
 67}
 68LL legendre(LL a,LL p) //勒让德符号,判断二次剩余
 69{
 70    if (ksm(a,(p-1)>>1,p)==1) return 1;
 71    return -1;
 72}
 73LL pri[N],num[N];//分解质因数的底数和指数。
 74int cnt; //质因子的个数
 75void solve(LL n,LL pri[],LL num[])
 76{
 77    cnt = 0 ;
 78    for ( int  i = 0 ; p[i] * p[i] <= n ; i++)
 79    {
 80	if (n%p[i]==0)
 81	{
 82	    int Num = 0 ;
 83	    pri[cnt] = p[i];
 84	    while (n%p[i]==0)
 85	    {
 86		Num++;
 87		n/=p[i];
 88	    }
 89	    num[cnt] = Num;
 90	    cnt++;
 91	}
 92    }
 93    if (n>1)
 94    {
 95	pri[cnt] = n;
 96	num[cnt] = 1;
 97	cnt++;
 98    }
 99}
100LL fac[N];
101int cnt2; //n的因子的个数
102void get_fac(LL n)//得到n的所有因子
103{
104    cnt2 = 0 ;
105    for (int i =  1 ; i*i <= n ; i++)
106    {
107	if (n%i==0)
108	{
109	    if (i*i!=n)
110	    {
111		fac[cnt2++] = i ;
112		fac[cnt2++] = n/i;
113	    }
114	    else fac[cnt2++] = i;
115	}
116    }
117}
118int get_loop( LL p) //暴力得到不大于13的素数的循环节。
119{		    
120    LL a,b,c;
121    a = 0 ;
122    b = 1 ;
123    for ( int i = 2; ; i++)
124    {
125	c = (a+3*b%p)%p;
126	a = b;
127	b = c;
128	if (a==0&&b==1) return i-1;
129    }
130}
131/*
132    2->3
133    3->2
134    5->12
135    7->16
136    11->8
137    13->52
138    */
139const LL LOOP[10]={3,2,12,16,8,52};
140LL ask_loop(int id)
141{
142    return LOOP[id];
143}
144LL find_loop(LL n)
145{
146    solve(n,pri,num);
147    LL ans = 1;
148    for ( int i = 0 ; i < cnt ; i++)
149    {
150	LL rec = 1;
151	if (pri[i]<=13) rec = ask_loop(i);
152	else
153	{
154	    if (legendre(13,pri[i])==1)
155		get_fac(pri[i]-1);
156	    else get_fac((pri[i]+1)*(3-1)); //为什么可以假设循环节不大于2*(p+1)???
157	    sort(fac,fac+cnt2);
158	    for ( int j = 0 ; j < cnt2 ; j++) //挨个验证因子
159	    {
160		Mat tmp = mat_ksm(M,fac[j],pri[i]); //下标从0开始,验证fac[j]为循环节,应该看fib[0]==fib[fac[j]]和fib[1]==fib[fac[j]+1]是否成立
161		tmp = mul(tmp,M1,pri[i]);
162		if (tmp.mat[0][0]==0&&tmp.mat[1][0]==1)
163		{
164		    rec = fac[j];
165		    break;
166		}
167	    }
 1	}
 2	for ( int j = 1 ; j < num[i] ; j++)
 3	    rec *=pri[i];
 4	ans = ans / gcd(ans,rec) * rec;
 5    }
 6    return ans;
 7}
 8void init()
 9{
10    M.clear();
11    M.mat[0][1] = M.mat[1][0] = 1;
12    M.mat[1][1] = 3;
13    M1.clear();
14    M1.mat[1][0] = 1;
15}
16LL n;
17LL loop0 = 1E9+7;
18LL loop1,loop2;
19int main()
20{
21	#ifndef  ONLINE_JUDGE 
22	freopen("code/in.txt","r",stdin);
23  #endif
24	/*
25	printf("%d\n",get_loop(2));
26	printf("%d\n",get_loop(3));
27	printf("%d\n",get_loop(5));
28	printf("%d\n",get_loop(7));
29	printf("%d\n",get_loop(11));
30	printf("%d\n",get_loop(13));
31	*/
32	init();
33	isprime();
34	while (~scanf("%lld\n",&n))
35	{
36	    if (n==0||n==1)
37	    {
38		printf("%lld\n",n);
39		continue;
40	    }
41	    LL loop1 = find_loop(loop0);
42	    LL loop2 = find_loop(loop1);
43//	    printf("loop1:%lld loop2:%lld\n",loop1,loop2);
44	    LL cur = n;
45	    Mat ans = mat_ksm(M,cur-1,loop2);
46	    ans = mul(ans,M1,loop2);
47	    cur = ans.mat[1][0];
48	    if (cur!=0&&cur!=1)
49	    {
50		Mat ans = mat_ksm(M,cur-1,loop1);
51		ans = mul(ans,M1,loop1);
52		cur = ans.mat[1][0];
53	    }
54	    if (cur!=0&&cur!=1)
55	    {
56		Mat ans = mat_ksm(M,cur-1,loop0);
57		ans = mul(ans,M1,loop0);
58		cur = ans.mat[1][0];
59	    }
60	    printf("%lld\n",cur);
	}
1#ifndef ONLINE_JUDGE  
2	fclose(stdin);
3#endif
4	return 0;
5}