hdu 4291 A Short problem (矩阵快速幂+广义斐波那契循环节||暴力找循环节)
题意:
Given n (1 <= n <= 1018), You should solve for
g(g(g(n))) mod 109 + 7 where
g(n) = 3g(n - 1) + g(n - 2)
g(1) = 1
g(0) = 0思路:找循环节。首先由于模数固定,可以暴力一下找到循环节。
得到1E9+7的循环节是222222224,222222224的循环节是183120.
然后三次矩阵快速幂就行了。
需要注意每次都要判断那一层的n是否为0和1。
暴力解法:
/* ***********************************************
Author :111qqz
Created Time :Mon 31 Oct 2016 02:47:01 PM CST
File Name :code/hdu/4291.cpp
************************************************ */
1#include <cstdio>
2#include <cstring>
3#include <iostream>
4#include <algorithm>
5#include <vector>
6#include <queue>
7#include <set>
8#include <map>
9#include <string>
10#include <cmath>
11#include <cstdlib>
12#include <ctime>
13#define fst first
14#define sec second
15#define lson l,m,rt<<1
16#define rson m+1,r,rt<<1|1
17#define ms(a,x) memset(a,x,sizeof(a))
18typedef long long LL;
19#define pi pair < int ,int >
20#define MP make_pair
1using namespace std;
2const double eps = 1E-8;
3const int dx4[4]={1,0,0,-1};
4const int dy4[4]={0,-1,1,0};
5const int inf = 0x3f3f3f3f;
6const LL loop0 = 1E9+7;
7const LL loop1=222222224,loop2=183120; //暴力得到每一层的循环节。
8/*
9LL find_loop(LL mod)
10{
11 LL a,b,c;
12 a = 0 ;
13 b = 1 ;
14 for ( int i = 2 ; ; i++)
15 {
16 c = (a+3*b%mod)% mod;
17 a = b;
18 b = c;
19// cout<<"a:"<<a<<" b:"<<b<<endl;
20 if (a==0&&b==1)
21 {
22 return i-1; // i的时候得到第i项,判断循环的时候是判断g[i-1]==g[0]&&g[i]==g[1],所以循环节长度是i-1;
23 }
24 }
25}*/
26LL n;
27struct Mat
28{
29 LL mat[2][2];
30 void clear()
31 {
32 ms(mat,0);
33 }
34 void out()
35 {
36 cout<<mat[0][0]<<" "<<mat[0][1]<<endl;
37 cout<<mat[1][0]<<" "<<mat[1][1]<<endl;
38 cout<<endl;
39 }
40}M,M1;
41Mat mul(Mat a,Mat b,LL MOD)
42{
43 Mat c;
44 c.clear();
45 for ( int i = 0 ; i < 2 ; i++)
46 for ( int j = 0 ; j < 2 ; j++)
47 for ( int k = 0 ; k < 2 ; k++)
48 c.mat[i][j] = (c.mat[i][j] + a.mat[i][k]*b.mat[k][j]%MOD)%MOD;
49 return c;
50}
51Mat power(Mat a,LL b,LL MOD)
52{
53 Mat res;
54 res.clear();
55 for ( int i = 0 ;i < 2 ; i++) res.mat[i][i] = 1;
56 while (b>0)
57 {
58 if (b&1) res = mul(res,a,MOD);
59 b = b>>1LL;
60 a = mul(a,a,MOD);
61 }
62 return res;
63}
64void Mat_init()
65{
66 M.clear();
67 M.mat[0][1] = 1;
68 M.mat[1][0] = 1;
69 M.mat[1][1] = 3;
70 M1.clear();
71 M1.mat[1][0] = 1;
72}
73int main()
74{
75 #ifndef ONLINE_JUDGE
76 freopen("code/in.txt","r",stdin);
77 #endif
78 /*
79 loop1 = find_loop(loop0);
80 printf("loop1:%lld\n",loop1);
81 loop2 = find_loop(loop1);
82 printf("loop2:%lld\n",loop2);
83 */
84 Mat_init();
85 while (scanf("%lld\n",&n)!=EOF)
86 {
87 if (n==0)
88 {
89 puts("0");
90 continue;
91 }
92 if (n==1)
93 {
94 puts("1");
95 continue;
96 }
1 LL cur = n;
2 Mat ans;
3 ans = power(M,cur-1,loop2);
4 ans = mul(ans,M1,loop2);
5 cur = ans.mat[1][0];
6 if (cur!=0&&cur!=1) //三次快速幂,每次都要记得判断初始项。
7 {
1 ans = power(M,cur-1,loop1);
2 ans = mul(ans,M1,loop1);
3 cur = ans.mat[1][0];
4 }
5 if (cur!=0&&cur!=1)
6 {
7 ans = power(M,cur-1,loop0);
8 ans = mul(ans,M1,loop0);
9 cur = ans.mat[1][0];
10 }
11 printf("%lld\n",cur);
12 }
1#ifndef ONLINE_JUDGE
2 fclose(stdin);
3#endif
4 return 0;
5}
再来一个比较一般的做法:
参考递推式循环节
Acdreamer的博客_广义Fibonacci数列找循环节
摘重点:
今天早上起来后,看了下代码,为什么要判断5是不是p的模二次剩余呢,为什么是5呢想了想,5对于斐波那契数列来讲,不就是x^2=x+1的delta么,那么这题的递推式是x^2=3x+1,delta=33+4=13,然后我就把勒让德符号判断二次剩余那里改成13,然后对应的暴力出13及13以内的素数对应的循环节,交了一发,AC了
所以综上所述:
是模
的二次剩余时,枚举
的因子
是模
的二次非剩余时,枚举
的因子
对于第二种非剩余的情况,理论上是枚举(p+1)(p-1)的因子,实际上常常只是枚举2(p+1)的因子*
对于c=5的情况,是有定理:
不过对于c不等于5的情况。。。该结论是否一定成立呢...感觉不是很好证,求指教。
/* ***********************************************
Author :111qqz
Created Time :Mon 31 Oct 2016 08:22:17 PM CST
File Name :code/hdu/4291_2.cpp
************************************************ */
1#include <cstdio>
2#include <cstring>
3#include <iostream>
4#include <algorithm>
5#include <vector>
6#include <queue>
7#include <set>
8#include <map>
9#include <string>
10#include <cmath>
11#include <cstdlib>
12#include <ctime>
13#define fst first
14#define sec second
15#define lson l,m,rt<<1
16#define rson m+1,r,rt<<1|1
17#define ms(a,x) memset(a,x,sizeof(a))
18typedef long long LL;
19#define pi pair < int ,int >
20#define MP make_pair
1using namespace std;
2const double eps = 1E-8;
3const int dx4[4]={1,0,0,-1};
4const int dy4[4]={0,-1,1,0};
5const int inf = 0x3f3f3f3f;
6struct Mat
7{
8 LL mat[2][2];
9 void clear()
10 {
11 ms(mat,0);
12 }
13}M,M1;
14Mat mul (Mat a,Mat b,LL mod)
15{
16 Mat c;
17 c.clear();
18 for ( int i = 0 ; i < 2 ; i++)
19 for ( int j = 0 ; j < 2 ; j++)
20 for ( int k = 0 ; k < 2 ; k++)
21 c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j]%mod)%mod;
22 return c;
23}
24Mat mat_ksm(Mat a,LL b,LL mod)
25{
26 Mat res;
27 res.clear();
28 for ( int i = 0 ; i < 2 ; i++) res.mat[i][i] = 1;
29 while (b>0)
30 {
31 if (b&1) res = mul(res,a,mod);
32 b = b >> 1LL;
33 a = mul(a,a,mod);
34 }
35 return res;
36}
37LL gcd(LL a,LL b)
38{
39 return b?gcd(b,a%b):a;
40}
41const int N = 1E6+7;
42bool prime[N];
43int p[N];
44void isprime() //一个普通的筛
45{
46 int cnt = 0 ;
47 ms(prime,true);
48 for ( int i = 2 ; i < N ; i++)
49 {
50 if (prime[i])
51 {
52 p[cnt++] = i ;
53 for ( int j = i+i ; j < N ; j+=i) prime[j] = false;
54 }
55 }
56}
57LL ksm( LL a,LL b,LL mod)
58{
59 LL res = 1;
60 while (b>0)
61 {
62 if (b&1) res = (res * a) % mod;
63 b = b >> 1LL;
64 a = a * a % mod;
65 }
66 return res;
67}
68LL legendre(LL a,LL p) //勒让德符号,判断二次剩余
69{
70 if (ksm(a,(p-1)>>1,p)==1) return 1;
71 return -1;
72}
73LL pri[N],num[N];//分解质因数的底数和指数。
74int cnt; //质因子的个数
75void solve(LL n,LL pri[],LL num[])
76{
77 cnt = 0 ;
78 for ( int i = 0 ; p[i] * p[i] <= n ; i++)
79 {
80 if (n%p[i]==0)
81 {
82 int Num = 0 ;
83 pri[cnt] = p[i];
84 while (n%p[i]==0)
85 {
86 Num++;
87 n/=p[i];
88 }
89 num[cnt] = Num;
90 cnt++;
91 }
92 }
93 if (n>1)
94 {
95 pri[cnt] = n;
96 num[cnt] = 1;
97 cnt++;
98 }
99}
100LL fac[N];
101int cnt2; //n的因子的个数
102void get_fac(LL n)//得到n的所有因子
103{
104 cnt2 = 0 ;
105 for (int i = 1 ; i*i <= n ; i++)
106 {
107 if (n%i==0)
108 {
109 if (i*i!=n)
110 {
111 fac[cnt2++] = i ;
112 fac[cnt2++] = n/i;
113 }
114 else fac[cnt2++] = i;
115 }
116 }
117}
118int get_loop( LL p) //暴力得到不大于13的素数的循环节。
119{
120 LL a,b,c;
121 a = 0 ;
122 b = 1 ;
123 for ( int i = 2; ; i++)
124 {
125 c = (a+3*b%p)%p;
126 a = b;
127 b = c;
128 if (a==0&&b==1) return i-1;
129 }
130}
131/*
132 2->3
133 3->2
134 5->12
135 7->16
136 11->8
137 13->52
138 */
139const LL LOOP[10]={3,2,12,16,8,52};
140LL ask_loop(int id)
141{
142 return LOOP[id];
143}
144LL find_loop(LL n)
145{
146 solve(n,pri,num);
147 LL ans = 1;
148 for ( int i = 0 ; i < cnt ; i++)
149 {
150 LL rec = 1;
151 if (pri[i]<=13) rec = ask_loop(i);
152 else
153 {
154 if (legendre(13,pri[i])==1)
155 get_fac(pri[i]-1);
156 else get_fac((pri[i]+1)*(3-1)); //为什么可以假设循环节不大于2*(p+1)???
157 sort(fac,fac+cnt2);
158 for ( int j = 0 ; j < cnt2 ; j++) //挨个验证因子
159 {
160 Mat tmp = mat_ksm(M,fac[j],pri[i]); //下标从0开始,验证fac[j]为循环节,应该看fib[0]==fib[fac[j]]和fib[1]==fib[fac[j]+1]是否成立
161 tmp = mul(tmp,M1,pri[i]);
162 if (tmp.mat[0][0]==0&&tmp.mat[1][0]==1)
163 {
164 rec = fac[j];
165 break;
166 }
167 }
1 }
2 for ( int j = 1 ; j < num[i] ; j++)
3 rec *=pri[i];
4 ans = ans / gcd(ans,rec) * rec;
5 }
6 return ans;
7}
8void init()
9{
10 M.clear();
11 M.mat[0][1] = M.mat[1][0] = 1;
12 M.mat[1][1] = 3;
13 M1.clear();
14 M1.mat[1][0] = 1;
15}
16LL n;
17LL loop0 = 1E9+7;
18LL loop1,loop2;
19int main()
20{
21 #ifndef ONLINE_JUDGE
22 freopen("code/in.txt","r",stdin);
23 #endif
24 /*
25 printf("%d\n",get_loop(2));
26 printf("%d\n",get_loop(3));
27 printf("%d\n",get_loop(5));
28 printf("%d\n",get_loop(7));
29 printf("%d\n",get_loop(11));
30 printf("%d\n",get_loop(13));
31 */
32 init();
33 isprime();
34 while (~scanf("%lld\n",&n))
35 {
36 if (n==0||n==1)
37 {
38 printf("%lld\n",n);
39 continue;
40 }
41 LL loop1 = find_loop(loop0);
42 LL loop2 = find_loop(loop1);
43// printf("loop1:%lld loop2:%lld\n",loop1,loop2);
44 LL cur = n;
45 Mat ans = mat_ksm(M,cur-1,loop2);
46 ans = mul(ans,M1,loop2);
47 cur = ans.mat[1][0];
48 if (cur!=0&&cur!=1)
49 {
50 Mat ans = mat_ksm(M,cur-1,loop1);
51 ans = mul(ans,M1,loop1);
52 cur = ans.mat[1][0];
53 }
54 if (cur!=0&&cur!=1)
55 {
56 Mat ans = mat_ksm(M,cur-1,loop0);
57 ans = mul(ans,M1,loop0);
58 cur = ans.mat[1][0];
59 }
60 printf("%lld\n",cur);
}
1#ifndef ONLINE_JUDGE
2 fclose(stdin);
3#endif
4 return 0;
5}
