hdu 4335 What is N? (指数循环节+欧拉函数)
题意:给出b,p,m(( 0<=b<P, 1<=P<=10^5, 1 <= M <=2^64 – 1 )),问满足图中条件的n有多少个。
思路:这题由于对p没有限制,所以细节多一些,需要讨论。
首先我们知道指数循环节公式,也就是所谓的降幂公式为:a^x = a^(x mod phi(c)+phi(c)) (mod c) x>=phi(c),(ps:后面的限制条件,在x<phi(c)的时候,该式子依然正确,只不过增加了运算复杂度。。。? 存疑)
然后我们只需要对n分两种情况讨论。
第一种是n<t ,第二种是n>=t (t = min{x| x! % phi(P)==0})
由于t不会很大。。前一种直接暴力。。。
后一种用降幂公式搞之。。。
/* ***********************************************
Author :111qqz
Created Time :Thu 27 Oct 2016 03:43:05 AM CST
File Name :code/hdu/4335.cpp
************************************************ */
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#define fst first
#define sec second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ms(a,x) memset(a,x,sizeof(a))
typedef long long LL;
#define pi pair < int ,int >
#define MP make_pair
typedef unsigned long long ULL;
using namespace std;
const double eps = 1E-8;
const int dx4[4]={1,0,0,-1};
const int dy4[4]={0,-1,1,0};
const int inf = 0x3f3f3f3f;
const int N =2E5+7;
LL b,p;
LL a[N];
unsigned long long M;
LL euler( LL x)
{
LL ret = 1;
for ( LL i = 2 ; i * i <= x ; i++)
{
if (x%i==0)
{
x/=i;
ret*=(i-1);
while (x%i==0)
{
x/=i;
ret*=i;
}
}
}
if (x>1) ret*=(x-1);
return ret;
}
LL ksm( LL a,LL b,LL k)
{
LL res = 1;
while (b>0)
{
if (b&1) res = (res * a) % k;
b = b >> 1LL;
a = (a*a) % k;
}
return res;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("code/in.txt","r",stdin);
#endif
int T;
cin>>T;
int cas = 0;
while (T--)
{
scanf("%lld%lld%llu",&b,&p,&M);
printf("Case #%d: ",++cas);
LL mod = euler(p);
if (p==1)
{
if (b==0)
{
if (M==18446744073709551615ULL)
puts("18446744073709551616");
else printf("%llu\n",M+1); //把%llu 写成了%lld...wa了半天。。。。。<sad
}else printf("0\n");
continue;
}
LL cnt = 0 ;
LL fac = 1;
LL i = 0 ;
/*
for ( i = 0 ; ULL(i)<=M&&fac < mod ; i++)
{
if (ksm(i,fac,p)==b) cnt++;
fac *= (i+1);
}
*/
fac%=mod;
for ( ; ULL(i)<=M && fac ; i++)
{
if (ksm(i,fac+mod,p)==b) cnt++;
fac = fac*(i+1)%mod;
}
if (ULL(i)<=M)
{
LL num = 0 ;
for ( int j = 0 ; j < p ; j++)
{
a[j] = ksm(i+j,mod,p);
if (a[j]==b) ++num;
}
LL bk_num = (M-i+1)/p;
cnt +=bk_num*num;
LL Rem = (M-i+1)-bk_num*p;
for ( int j = 0 ; j < Rem ; j++)
cnt += (a[j]==b);
}
printf("%lld\n",cnt);
}
#ifndef ONLINE_JUDGE
fclose(stdin);
#endif
return 0;
}