poj 3070 Fibonacci (矩阵加速线性递推式)
题意:求f[n] % 10000,f为斐波那契数。
思路:按照题目给出的公式,或者按照加速线性递推式的方法都可以。。。
因为把模数的1E4手滑写成1E4+7结果调了半天也是没谁了呵呵呵呵。
/* ***********************************************
Author :111qqz
Created Time :Tue 18 Oct 2016 01:18:40 AM CST
File Name :code/poj/3070.cpp
************************************************ */
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#define fst first
#define sec second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ms(a,x) memset(a,x,sizeof(a))
typedef long long LL;
#define pi pair < int ,int >
#define MP make_pair
using namespace std;
const double eps = 1E-8;
const int dx4[4]={1,0,0,-1};
const int dy4[4]={0,-1,1,0};
const int inf = 0x3f3f3f3f;
const int MOD = 1E4;
int n;
struct Mat
{
int mat[5][5];
void clear()
{
ms(mat,0);
}
}M,M1;
Mat operator * (Mat a,Mat b)
{
Mat c;
c.clear();
for ( int i = 0 ; i < 2 ; i++)
for ( int j = 0 ; j < 2 ; j++)
for ( int k = 0 ; k < 2 ; k++)
c.mat[i][j] = (c.mat[i][j] + a.mat[i][k]*b.mat[k][j])%MOD;
return c;
}
Mat operator ^ (Mat a,int b)
{
Mat c;
c.clear();
for ( int i = 0 ; i < 2 ; i++)
for ( int j = 0 ; j < 2 ; j++)
c.mat[i][j]=(i==j); //初始化为单位矩阵。
while (b>0)
{
if (b&1) c = c * a;
b = b >> 1;
a = a * a;
}
return c;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("code/in.txt","r",stdin);
#endif
while (~scanf("%d",&n))
{
if (n==-1) break;
if (n==0)
{
printf("%d\n",0);
continue;
}
M.mat[0][0] = 0;
M.mat[0][1] = 1;
M.mat[1][0] = 1;
M.mat[1][1] = 1;
M1.mat[0][0] = 0;
M1.mat[1][0] = 1;
Mat ans;
ans.clear();
ans = (M ^ n )* M1;
printf("%d\n",ans.mat[0][0]);
}
#ifndef ONLINE_JUDGE
fclose(stdin);
#endif
return 0;
}