【叉姐的魔法训练第一课_初级魔法练习】poj 3244 Difference between Triplets (数学)
题意:
For every pair of triplets, Ta = (Ia, Ja, Ka) and T__b = (Ib, Jb, Kb), we define the difference value between Ta and_T__b_ as follows:
D(Ta,_ Tb_) = max {Ia − Ib, Ja − Jb, Ka − Kb} − min {Ia − Ib, Ja − Jb, Ka − Kb}
Now you are given N triplets, could you write a program to calculate the sum of the difference values between every unordered pair of triplets?
思路:转化要求的式子,如果把_Ia_ − Ib, Ja − Jb, Ka − Kb 看成数轴上的点,所求的式子就变成了求三个点构成的线段的距离。
**设X=Ia − Ib,Y=Ja − Jb,Z=Ka − Kb,那么该距离D = (|X-Y| + |Y-Z| + |Z-X| )/2(该式子是此题最关键的一部,可以通过画图直观得到) **
D=|(ia-ja)-(ib-jb)| + |(ja-ka)-(jb-kb)| + | (ka-za)+(kb-zb) |
设a = ia-ja,b =ja-ka,c = ka-ia,然后分别排序类似于bzoj1604_拆点求曼哈顿距离
考虑第i个a,对于其他的n-1个a,有i-1个比它小,n-i个比它大,因此对答案的贡献为(i-1)个a[i]和 (n-i)个-a[i]
b,c同理。
/* ***********************************************
Author :111qqz
Created Time :2016年11月17日 星期四 20时05分54秒
File Name :code/hdu/3244.cpp
************************************************ */
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#define fst first
#define sec second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ms(a,x) memset(a,x,sizeof(a))
typedef long long LL;
#define pi pair < int ,int >
#define MP make_pair
using namespace std;
const double eps = 1E-8;
const int dx4[4]={1,0,0,-1};
const int dy4[4]={0,-1,1,0};
const int inf = 0x3f3f3f3f;
const int N=2E5+7;
int n;
int x,y,z;
int a[N],b[N],c[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("code/in.txt","r",stdin);
#endif
while (~scanf("%d",&n))
{
if (n==0) break;
for ( int i = 1; i <= n ; i++)
{
scanf("%d%d%d",&x,&y,&z);
a[i] = x - y;
b[i] = y - z;
c[i] = z - x;
}
sort(a+1,a+n+1);
sort(b+1,b+n+1);
sort(c+1,c+n+1);
LL ans = 0 ;
for ( int i = 1 ; i <= n ; i++)
{
ans += 1LL*(i-1)*a[i];
ans +=-1LL*(n-i)*a[i];
ans += 1LL*(i-1)*b[i];
ans +=-1LL*(n-i)*b[i];
ans += 1LL*(i-1)*c[i];
ans +=-1LL*(n-i)*c[i];
}
printf("%lld\n",ans/2);
}
#ifndef ONLINE_JUDGE
fclose(stdin);
#endif
return 0;
}