hdu 1828 Picture (线段树+扫描线 求 矩形周长并)

题目链接

题意:

求矩形周长并。

思路:

线段树+扫描线。

和前面的求面积并比较类似,我们先考虑平行x轴的线段,考虑线段树,维护的一段区间中被矩形覆盖的次数cnt和至少覆盖一次的长度的len.

只不过我们这次求的是每条扫描线的长度对周长的贡献,因此不需要乘高度。

需要注意的是,每条扫描线对周长的贡献,是目前扫描线的长度,与上一次扫描线长度的差的绝对值。(不是与上一次答案的差的绝对值!)

演示x轴求长度和的部分  图片来自 lwt聚聚的博客 这里写图片描述

以及一个小细节是,求面积的时候,最后一条扫描线对答案是没有贡献的(因为每次是求当前扫描线与下一条扫描线之间的面积)

但是求周长的时候,最后一条扫描线是一定会对答案有贡献的。

/* ***********************************************
Author :111qqz
Created Time :2017年09月27日 星期三 21时24分20秒
File Name :1828.cpp
************************************************ */
 1#include <cstdio>
 2#include <cstring>
 3#include <iostream>
 4#include <algorithm>
 5#include <vector>
 6#include <queue>
 7#include <set>
 8#include <map>
 9#include <string>
10#include <cmath>
11#include <cstdlib>
12#include <ctime>
13#define PB push_back
14#define fst first
15#define sec second
16#define lson l,m,rt<<1
17#define rson m+1,r,rt<<1|1
18#define ms(a,x) memset(a,x,sizeof(a))
19typedef long long LL;
20#define pi pair < int ,int >
21#define MP make_pair
 1using namespace std;
 2const double eps = 1E-8;
 3const int dx4[4]={1,0,0,-1};
 4const int dy4[4]={0,-1,1,0};
 5const int inf = 0x3f3f3f3f;
 6const int N=1E4+7;
 7int n;
 8struct Seg
 9{
10    double l,r,h;
11    int d;
12    Seg(){}
13    Seg(double l,double r,double h,int d):l(l),r(r),h(h),d(d){}
14    bool operator < (const Seg &rhs)const
15    {
16    return h < rhs.h;
17    }
18}a[N],b[N];
 1struct Tree
 2{
 3     int cnt;
 4     double len; 
 5}tree[N<<2];
 6double X[N],Y[N];
 7void pushUP(int l,int r,int rt,double *X)
 8{
 9    if (tree[rt].cnt) tree[rt].len = X[r+1] - X[l];
10    else
11    if (l==r) tree[rt].len = 0 ;
12    else tree[rt].len = tree[rt<<1].len + tree[rt<<1|1].len;
13}
14void update( int L,int R,int val,int l,int r,int rt,double *X)
15{
16    if (L<=l && r<=R)
17    {
18    tree[rt].cnt+=val;
19//  cout<<"val:"<<val<<" rt:"<<rt<<" tree[rt].cnt:"<<tree[rt].cnt<<endl;
20    pushUP(l,r,rt,X);
21    return;
22    }
23    int m = (l+r)>>1;
24    if (L<=m) update(L,R,val,lson,X);
25    if (R>=m+1) update(L,R,val,rson,X);
26    pushUP(l,r,rt,X);
27}
28int main()
29{
30    #ifndef  ONLINE_JUDGE 
31    freopen("./in.txt","r",stdin);
32  #endif
33    while (~scanf("%d",&n))
34    {
35        for ( int i = 1 ; i<= n ; i++)
36        {
37        double x1,y1,x2,y2;
38        scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
39        X[i] = x1;
40        X[i+n] = x2;
41        Y[i] = y1;
42        Y[i+n] = y2;
43        a[i]=Seg(x1,x2,y1,1);
44        a[i+n]=Seg(x1,x2,y2,-1);
45        b[i] = Seg(y1,y2,x1,1);
46        b[i+n] = Seg(y1,y2,x2,-1); //从左到右扫描
        }
1        n=n<<1;
2        double ans =  0;
3        double lstlen = 0 ;
4        sort(X+1,X+n+1);
5        sort(a+1,a+n+1);
 1        int m = unique(X+1,X+n+1)-X-1;
 2        ms(tree,0);
 3        //求面积的时候不需要计算最后一条扫描线(因为答案是0),但是求周长的时候要计算)
 4        for ( int i = 1 ; i <= n ; i++)
 5        {
 6        int l = lower_bound(X+1,X+1+m,a[i].l)-X;
 7        int r = lower_bound(X+1,X+1+m,a[i].r)-X;
 8//      cout<<"l:"<<l<<" r:"<<r<<endl;
 9        update(l,r-1,a[i].d,1,m,1,X);
10        ans += abs(tree[1].len-lstlen);
11        lstlen = tree[1].len;
12        //cout<<"lstlen:"<<lstlen<<endl;
13        }
14        //cout<<"ans:"<<ans<<endl;
 1        ms(tree,0);
 2        sort(Y+1,Y+n+1);
 3        sort(b+1,b+n+1);
 4        m = unique(Y+1,Y+n+1)-Y-1;
 5        lstlen = 0 ;
 6//      cout<<"m:"<<m<<endl;
 7        for ( int i = 1 ; i <= n ; i++)
 8        {
 9        int l = lower_bound(Y+1,Y+1+m,b[i].l)-Y;
10        int r = lower_bound(Y+1,Y+1+m,b[i].r)-Y;
11    //  cout<<"l:"<<l<<" r:"<<r<<endl;
12        update(l,r-1,b[i].d,1,m,1,Y);
13        ans += abs(tree[1].len - lstlen);
14        lstlen = tree[1].len;
15        }
16        printf("%.0f\n",ans);
    }
1  #ifndef ONLINE_JUDGE  
2  fclose(stdin);
3  #endif
4    return 0;
5}