hdu 5950 Recursive sequence (构造矩阵,快速幂)
题意:
给f[1],f[2],n,f[i] = 2*f[i-2] + f[i-1] + i^4,求f[n]的值。
思路:
很容易想到矩阵,但是i^4不是线性的差评,我们可以拆一下
i^4=(i-1+1)^4,然后二项式展开即可
i^4=(i-1)^4 + 4*(i-1)^3 + 6(i-1)^2 + 4(i-1) + 1
所以为了维护i^4这一项,需要(i-1)^4,(i-1)^3,(i-1)^2,(i-1),1,
再加上f[i-1]和f[i-2]两项,一共7项。
然后构造矩阵为
16沈阳 onsite的题,当时好像写了一个小时,现在看来,果然是个人尽皆知的傻逼题orz
/* ***********************************************
Author :111qqz
Created Time :2017年10月10日 星期二 17时38分11秒
File Name :5950.cpp
************************************************ */
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#define PB push_back
#define fst first
#define sec second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ms(a,x) memset(a,x,sizeof(a))
typedef long long LL;
#define pi pair < int ,int >
#define MP make_pair
using namespace std;
const double eps = 1E-8;
const int dx4[4]={1,0,0,-1};
const int dy4[4]={0,-1,1,0};
const int inf = 0x3f3f3f3f;
const int N=7;
const LL MOD =2147493647LL;
LL a,b,n;
struct Mat
{
LL mat[N][N];
void clear()
{
ms(mat,0);
}
void print()
{
for ( int i = 0 ; i < N; i++)
for ( int j = 0 ; j < N ; j++)
printf("%lld%c",mat[i][j],j==N-1?'\n':' ');
puts("");
}
}M,M1;
Mat operator * (Mat a,Mat b)
{
Mat c;
c.clear();
for ( int i = 0 ; i < N ; i++)
for ( int j = 0 ; j < N ; j++)
for ( int k = 0 ; k < N ; k++)
c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j]%MOD)%MOD;
return c;
}
Mat operator ^ (Mat a,LL b)
{
Mat res;
res.clear();
for ( int i = 0 ; i < N ; i++) res.mat[i][i] = 1;
while (b>0)
{
if (b&1) res = res * a;
b = b >> 1LL;
a = a * a;
}
return res;
}
LL solve()
{
M.clear();
M.mat[0][1]=M.mat[1][2]=1;
for ( int i = 1 ; i < N; i++) M.mat[i][N-1]=1,M.mat[i][i]=1;
M.mat[1][0]=M.mat[4][5]=2;
M.mat[1][3]=M.mat[1][5]=M.mat[2][3]=M.mat[2][5]=4;
M.mat[1][4]=M.mat[2][4]=6;
M.mat[3][4]=M.mat[3][5]=3;
//M.print();
M1.clear();
M1.mat[0][0]=a;
M1.mat[1][0]=b;
//注意下标是从1开始的
M1.mat[2][0]=16;
M1.mat[3][0]=8;
M1.mat[4][0]=4;
M1.mat[5][0]=2;
M1.mat[6][0]=1;
//M1.print();
Mat ans;
ans.clear();
ans = (M^(n-2))*M1;
//ans.print();
return ans.mat[1][0];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("./in.txt","r",stdin);
#endif
int T;
cin>>T;
while (T--)
{
scanf("%lld%lld%lld",&n,&a,&b);
LL ans = solve();
printf("%lld\n",ans);
}
#ifndef ONLINE_JUDGE
fclose(stdin);
#endif
return 0;
}