广义Fibonacci数列找循环节 (二次剩余)

**问题:**给定 ,满足 ,求 的循

环节长度。

原理见广义Fibonacci数列找循环节

这里只说做法

我们先写出递推式的特征式子   x^2 =ax + b,整理得到 x^2-ax-b=0求出 delta = a^2+4b

对于质因数小于等于delta的部分,我们选择暴力求循环节。

暴力求循环节的代码如下:

int get_loop( LL p) //暴力得到不大于13的素数的循环节。
{                    
    LL a,b,c;
    a = 0 ;
    b = 1 ;
    for ( int i = 2; ; i++)
    {
        c = (a+3*b%p)%p;  //此处为递推式
        a = b;
        b = c;
        if (a==0&&b==1) return i-1;
    }
}

通常做法是先暴力求出来之后,写进一个表里。

通常不会有很多项。

对于质因数大于delta的部分,我们判断每个质因数是否是delta的二次剩余,如果是,枚举(prime-1)的因子,否则枚举2*(prime+1)的因子。

贴一个板子,需要注意如果是多个函数嵌套的形式,我们只需要从外向里,依次求循环节即可。

/* ***********************************************
Author :111qqz
Created Time :Mon 31 Oct 2016 08:22:17 PM CST
File Name :code/hdu/4291_2.cpp
************************************************ */
 
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#define fst first
#define sec second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ms(a,x) memset(a,x,sizeof(a))
typedef long long LL;
#define pi pair < int ,int >
#define MP make_pair
 
using namespace std;
const double eps = 1E-8;
const int dx4[4]={1,0,0,-1};
const int dy4[4]={0,-1,1,0};
const int inf = 0x3f3f3f3f;
struct Mat
{
    LL mat[2][2];
    void clear()
    {
        ms(mat,0);
    }
}M,M1;
Mat mul (Mat a,Mat b,LL mod)
{
    Mat c;
    c.clear();
    for ( int i = 0 ; i < 2 ; i++)
        for ( int j = 0 ; j < 2 ; j++)
            for ( int k  = 0 ; k < 2 ; k++)
                c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j]%mod)%mod;
    return c;
}
Mat mat_ksm(Mat a,LL b,LL mod)
{
    Mat res;
    res.clear();
    for ( int i = 0 ; i < 2 ; i++) res.mat[i][i] = 1;
    while (b>0)
    {
        if (b&1) res = mul(res,a,mod);
        b = b >> 1LL;
        a = mul(a,a,mod);
    }
    return res;
}
LL gcd(LL a,LL b)
{
    return b?gcd(b,a%b):a;
}
const int N = 1E6+7;
bool prime[N];
int p[N];
void isprime() //一个普通的筛
{
    int cnt = 0 ;
    ms(prime,true);
    for ( int i = 2 ; i < N ; i++)
    {
        if (prime[i])
        {
            p[cnt++] = i ;
            for ( int j = i+i ; j < N ; j+=i) prime[j] = false;
        }
    }
}
LL ksm( LL a,LL b,LL mod)
{
   LL res = 1;
   while (b>0)
   {
       if (b&1) res = (res * a) % mod;
       b = b >> 1LL;
       a = a * a % mod;
   }
   return res;
}
LL legendre(LL a,LL p) //勒让德符号,判断二次剩余
{
    if (ksm(a,(p-1)>>1,p)==1) return 1;
    return -1;
}
LL pri[N],num[N];//分解质因数的底数和指数。
int cnt; //质因子的个数
void solve(LL n,LL pri[],LL num[])
{
    cnt = 0 ;
    for ( int  i = 0 ; p[i] * p[i] <= n ; i++)
    {
        if (n%p[i]==0)
        {
            int Num = 0 ;
            pri[cnt] = p[i];
            while (n%p[i]==0)
            {
                Num++;
                n/=p[i];
            }
            num[cnt] = Num;
            cnt++;
        }
    }
    if (n>1)
    {
        pri[cnt] = n;
        num[cnt] = 1;
        cnt++;
    }
}
LL fac[N];
int cnt2; //n的因子的个数
void get_fac(LL n)//得到n的所有因子
{
    cnt2 = 0 ;
    for (int i =  1 ; i*i <= n ; i++)
    {
        if (n%i==0)
        {
            if (i*i!=n)
            {
                fac[cnt2++] = i ;
                fac[cnt2++] = n/i;
            }
            else fac[cnt2++] = i;
        }
    }
}
int get_loop( LL p) //暴力得到不大于13的素数的循环节。
{                    
    LL a,b,c;
    a = 0 ;
    b = 1 ;
    for ( int i = 2; ; i++)
    {
        c = (a+3*b%p)%p;
        a = b;
        b = c;
        if (a==0&&b==1) return i-1;
    }
}
/*
    2->3
    3->2
    5->12
    7->16
    11->8
    13->52
    */
const LL LOOP[10]={3,2,12,16,8,52};
LL ask_loop(int id)
{
    return LOOP[id];
}
LL find_loop(LL n)
{
    solve(n,pri,num);
    LL ans = 1;
    for ( int i = 0 ; i < cnt ; i++)
    {
        LL rec = 1;
        if (pri[i]<=13) rec = ask_loop(i);
        else
        {
            if (legendre(13,pri[i])==1)  //13就是delta值
                get_fac(pri[i]-1);
            else get_fac((pri[i]+1)*(3-1)); //为什么可以假设循环节不大于2*(p+1)???
            sort(fac,fac+cnt2);
            for ( int j = 0 ; j < cnt2 ; j++) //挨个验证因子
            {
                Mat tmp = mat_ksm(M,fac[j],pri[i]); //下标从0开始,验证fac[j]为循环节,应该看fib[0]==fib[fac[j]]和fib[1]==fib[fac[j]+1]是否成立
                tmp = mul(tmp,M1,pri[i]);
                if (tmp.mat[0][0]==0&&tmp.mat[1][0]==1)
                {
                    rec = fac[j];
                    break;
                }
            }
 
        }
        for ( int j = 1 ; j < num[i] ; j++)
            rec *=pri[i];
        ans = ans / gcd(ans,rec) * rec;
    }
    return ans;
}
void init()
{
    M.clear();
    M.mat[0][1] = M.mat[1][0] = 1;
    M.mat[1][1] = 3;
    M1.clear();
    M1.mat[1][0] = 1;
}
LL n;
LL loop0 = 1E9+7;
LL loop1,loop2;
int main()
{
        #ifndef  ONLINE_JUDGE 
        freopen("code/in.txt","r",stdin);
  #endif
        /*
        printf("%d\n",get_loop(2));
        printf("%d\n",get_loop(3));
        printf("%d\n",get_loop(5));
        printf("%d\n",get_loop(7));
        printf("%d\n",get_loop(11));
        printf("%d\n",get_loop(13));
        */
        init();
        isprime();
        while (~scanf("%lld\n",&n))
        {
            if (n==0||n==1)
            {
                printf("%lld\n",n);
                continue;
            }
            LL loop1 = find_loop(loop0);
            LL loop2 = find_loop(loop1);
//            printf("loop1:%lld loop2:%lld\n",loop1,loop2);
            LL cur = n;
            Mat ans = mat_ksm(M,cur-1,loop2);
            ans = mul(ans,M1,loop2);
            cur = ans.mat[1][0];
            if (cur!=0&&cur!=1)
            {
                Mat ans = mat_ksm(M,cur-1,loop1);
                ans = mul(ans,M1,loop1);
                cur = ans.mat[1][0];
            }
            if (cur!=0&&cur!=1)
            {
                Mat ans = mat_ksm(M,cur-1,loop0);
                ans = mul(ans,M1,loop0);
                cur = ans.mat[1][0];
            }
            printf("%lld\n",cur);
 
        }
 
#ifndef ONLINE_JUDGE  
        fclose(stdin);
#endif
        return 0;
}

再补一个,更为常用的,求斐波那契循环节的板子:

/* ***********************************************
Author :111qqz
Created Time :Mon 31 Oct 2016 03:54:15 AM CST
File Name :code/hdu/3977.cpp
************************************************ */
 
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#define fst first
#define sec second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ms(a,x) memset(a,x,sizeof(a))
typedef long long LL;
#define pi pair < int ,int >
#define MP make_pair
 
using namespace std;
const double eps = 1E-8;
const int dx4[4]={1,0,0,-1};
const int dy4[4]={0,-1,1,0};
const int inf = 0x3f3f3f3f;
LL P;
struct Mat
{
    LL mat[2][2];
    void clear()
    {
        ms(mat,0);
    }
}M,M1;
Mat mul (Mat a,Mat b,LL mod)
{
    Mat c;
    c.clear();
    for ( int i = 0 ; i < 2 ; i++)
        for ( int j = 0 ; j < 2 ; j++)
            for ( int k  = 0 ; k < 2 ; k++)
                c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j]%mod)%mod;
    return c;
}
Mat mat_ksm(Mat a,LL b,LL mod)
{
    Mat res;
    res.clear();
    for ( int i = 0 ; i < 2 ; i++) res.mat[i][i] = 1;
    while (b>0)
    {
        if (b&1) res = mul(res,a,mod);
        b = b >> 1LL;
        a = mul(a,a,mod);
    }
    return res;
}
LL gcd(LL a,LL b)
{
    return b?gcd(b,a%b):a;
}
const int N = 1E6+7;
bool prime[N];
int p[N];
void isprime() //一个普通的筛
{
    int cnt = 0 ;
    ms(prime,true);
    for ( int i = 2 ; i < N ; i++)
    {
        if (prime[i])
        {
            p[cnt++] = i ;
            for ( int j = i+i ; j < N ; j+=i) prime[j] = false;
        }
    }
}
LL ksm( LL a,LL b,LL mod)
{
   LL res = 1;
   while (b>0)
   {
       if (b&1) res = (res * a) % mod;
       b = b >> 1LL;
       a = a * a % mod;
   }
   return res;
}
LL legendre(LL a,LL p) //勒让德符号,判断二次剩余
{
    if (ksm(a,(p-1)>>1,p)==1) return 1;
    return -1;
}
LL pri[N],num[N];//分解质因数的底数和指数。
int cnt; //质因子的个数
void solve(LL n,LL pri[],LL num[])
{
    cnt = 0 ;
    for ( int  i = 0 ; p[i] * p[i] <= n ; i++)
    {
        if (n%p[i]==0)
        {
            int Num = 0 ;
            pri[cnt] = p[i];
            while (n%p[i]==0)
            {
                Num++;
                n/=p[i];
            }
            num[cnt] = Num;
            cnt++;
        }
    }
    if (n>1)
    {
        pri[cnt] = n;
        num[cnt] = 1;
        cnt++;
    }
}
LL fac[N];
int cnt2; //n的因子的个数
void get_fac(LL n)//得到n的所有因子
{
    cnt2 = 0 ;
    for (int i =  1 ; i*i <= n ; i++)
    {
        if (n%i==0)
        {
            if (i*i!=n)
            {
                fac[cnt2++] = i ;
                fac[cnt2++] = n/i;
            }
            else fac[cnt2++] = i;
        }
    }
}
LL find_loop(LL n)
{
    solve(n,pri,num);
    LL ans = 1;
    for ( int i = 0 ; i < cnt ; i++)
    {
        LL rec = 1;
        if (pri[i]==2) rec = 3;
        else if (pri[i]==3) rec = 8;
        else if (pri[i]==5) rec = 20;
        else
        {
            if (legendre(5,pri[i])==1)
                get_fac(pri[i]-1);
            else get_fac(2*pri[i]+2);
            sort(fac,fac+cnt2);
            for ( int j = 0 ; j < cnt2 ; j++) //挨个验证因子
            {
                Mat tmp = mat_ksm(M,fac[j],pri[i]); //下标从0开始,验证fac[j]为循环节,应该看fib[0]==fib[fac[j]]和fib[1]==fib[fac[j]+1]是否成立
                tmp = mul(tmp,M1,pri[i]);
                if (tmp.mat[0][0]==1&&tmp.mat[1][0]==1)
                {
                    rec = fac[j];
                    break;
                }
            }
 
        }
        for ( int j = 1 ; j < num[i] ; j++)
            rec *=pri[i];
        ans = ans / gcd(ans,rec) * rec;
    }
    return ans;
}
void init()
{
    M.clear();
    M.mat[0][1] = M.mat[1][0] = M.mat[1][1] = 1;
    M1.clear();
    M1.mat[0][0] = M1.mat[1][0] = 1;
}
int main()
{
        #ifndef  ONLINE_JUDGE 
        freopen("code/in.txt","r",stdin);
  #endif
        int T;
        int cas = 0 ;
        isprime();
        scanf("%d",&T);
        while (T--)
        {
            init();
            scanf("%lld",&P);
            printf("Case #%d: ",++cas);
            LL ret = find_loop(P);
            printf("%lld\n",ret);
        }
 
  #ifndef ONLINE_JUDGE  
  fclose(stdin);
  #endif
    return 0;
}