uva 10655 - Contemplation! Algebra (构造矩阵,快速幂)
题意:
给出a+b和ab的值,问a^n+b^n
思路:
构造矩阵,手写一下很显然...
转移矩阵M=[0 , 1]
[-q,p ]
初始矩阵M1=[p ]
[p^2-2*q]
快速幂即可。
有个坑点在于..读入的结束是p=0&q=0,并且只有这两个输入。
如果用p=0&&q=0作为终止条件,那么就会将三个输入,但p==0&&q==0的情况错误得终止...
正确的做法是 while (~scanf("%lld%lld%lld",&p,&q,&n)==3)
/* ***********************************************
Author :111qqz
Created Time :2017年10月01日 星期日 03时01分38秒
File Name :10655.cpp
************************************************ */
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#define PB push_back
#define fst first
#define sec second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ms(a,x) memset(a,x,sizeof(a))
typedef long long LL;
#define pi pair < int ,int >
#define MP make_pair
using namespace std;
const double eps = 1E-8;
const int dx4[4]={1,0,0,-1};
const int dy4[4]={0,-1,1,0};
const int inf = 0x3f3f3f3f;
LL p,q,n;
struct Mat
{
LL mat[105][105];
void clear()
{
ms(mat,0);
}
}M,M1;
Mat operator * (Mat a,Mat b)
{
Mat c;
c.clear();
for ( int i = 0 ; i < 2 ; i++)
for ( int j = 0 ; j < 2 ; j++)
for ( int k = 0 ; k < 2 ; k++)
c.mat[i][j] += a.mat[i][k] * b.mat[k][j];
return c;
}
Mat operator ^ (Mat a,LL b)
{
Mat ret;
ret.clear();
for ( int i = 0 ; i < 2 ; i++) ret.mat[i][i] = 1LL;
while (b>0)
{
if (b&1) ret = ret * a;
a = a * a;
b = b >> 1LL;
}
return ret;
}
LL solve()
{
if (n==0) return 2LL;
if (n==1) return p;
if (n==2) return p*p-2*q;
M1.clear();
M1.mat[0][0] = p;
M1.mat[1][0] = p*p-2*q;
M.clear();
M.mat[0][1] = 1;
M.mat[1][0] = -q;
M.mat[1][1] = p;
Mat ans;
ans.clear();
ans = (M^(n-2))*M1;
return ans.mat[1][0];
}
int main()
{
#ifndef ONLINE_JUDGE
// freopen("./in.txt","r",stdin);
#endif
while (scanf("%lld%lld%lld",&p,&q,&n)==3)
{
//if (p==0&&q==0) break;
//scanf("%lld",&n);
LL ans = solve();
printf("%lld\n",ans);
}
#ifndef ONLINE_JUDGE
fclose(stdin);
#endif
return 0;
}