uvalive 7675 | 2016 北京 regional onsite H - A New Ground Heating Device (二分+多个圆面积并)
题意:
在一个二维平面上,有n个加热设备,每个加热设备加热一个圆形,加热设备需要信号源才可以工作,信号源在原点上,但是高度不确定。假设设备的加热半径是一个与{信号源与设备的距离}有关的表达式。现在想要满足,至少有k个加热设备加热的面积大于s,问信号源的最高高度是多少。
思路:
训练的时候一眼二分,但是求圆并的时候gg了。。毫无思路。
搞定了多个圆面积并。。这题就很easy了。。
需要注意,每次二分的时候,记得初始化圆的d...
/* ***********************************************
Author :111qqz
File Name :H.cpp
************************************************ */
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
#define PB push_back
#define fst first
#define sec second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ms(a,x) memset(a,x,sizeof(a))
#define pi pair < int ,int >
#define MP make_pair
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef vector <int> VI;
const int INF = 0x3f3f3f3f;
const double eps = 1e-6;
const int MAXN = 1E3+7;
const double PI = acos(-1.0);
#define sqr(x) ((x)*(x))
const int N = 1010;
double area[N];
int n,k;
double Z[N];
double W,S;
int dblcmp(double d){ return d<-eps?-1:d>eps;}
struct point
{
double x,y;
double ang;
int d;
point(){}
point(double x,double y):x(x),y(y){}
point(double _x,double _y,double _ang,int _d)
{
x = _x;
y = _y;
ang = _ang;
d = _d;
}
void input(){scanf("%lf%lf",&x,&y);}
double angle(){ return atan2(y,x);}
point operator + (const point &rhs)const{ return point(x+rhs.x,y+rhs.y);}
point operator - (const point &rhs)const{ return point(x-rhs.x,y-rhs.y);}
point operator * (double t)const{ return point(t*x,t*y);}
point operator / (double t)const{ return point(x/t,y/t);}
double length() const { return sqrt(x*x+y*y);};
double length2() const { return x*x + y*y;}
point unit()const { double l = length();return point(x/l,y/l); }
}tp[N*2];
double cross (const point a,point b){ return a.x*b.y-a.y*b.x ;}
double dist(const point p1,point p2) { return (p1-p2).length();}
struct circle
{
point c;
double r;
double Z;
int d;
void pr()
{
printf(" (%.3f,%.3f) r=%.3f\n",c.x,c.y,r);
}
void input()
{
c.input();
scanf("%lf",&r);
d = 1;
}
bool contain (const circle & cir)const{ return dblcmp(dist(cir.c,c)+cir.r-r)<=0;}
bool interect (const circle & cir)const{ return dblcmp(dist(cir.c,c)-cir.r-r)<0;}
} cir[N];// tp[N * 2];
double dis(point a, point b) {return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));}
int CirCrossCir(circle cir1,circle cir2, point &p1, point &p2)
{
point m = cir2.c-cir1.c;
point s = cir2.c+cir1.c;
point m2 = point(sqr(m.x),sqr(m.y));
double dis2 = m2.x + m2.y, d = -(dis2 - sqr(cir1.r - cir2.r)) * (dis2 - sqr(cir1.r + cir2.r));
if (d + eps < 0) return 0;
if (d < eps) d = 0;
else d = sqrt(d);
double x = m.x * ((cir1.r + cir2.r) * (cir1.r - cir2.r) + m.x * s.x) + s.x * m2.y;
double y = m.y * ((cir1.r+ cir2.r) * (cir1.r - cir2.r) + m.y * s.y) + s.y * m2.x;
point dp = m*d;
dis2 *= 2;
p1 = point (x-dp.y,y+dp.x)/dis2;
p2 = point (x+dp.y,y-dp.x)/dis2;
if (d > eps) return 2;
else return 1;
}
bool circmp(const circle& u, const circle& v)
{
return dblcmp(u.r - v.r) < 0;
}
bool cmp(const point& u, const point& v)
{
if (dblcmp(u.ang - v.ang)) return u.ang < v.ang;
return u.d > v.d;
}
double calc(circle cir, point p1, point p2)
{
double ans = (p2.ang - p1.ang) * sqr(cir.r)
- cross ( (p1-cir.c),(p2-cir.c)) + cross( p1,p2);
return ans *0.5;
}
void CirUnion(circle cir[], int n)
{
circle cir1, cir2;
point p1,p2;
sort(cir, cir + n, circmp);
for (int i = 0; i < n; ++i)
for (int j = i + 1; j < n; ++j)
if (cir[j].contain(cir[i]))
cir[i].d++;
for (int i = 0; i < n; ++i)
{
int tn = 0, cnt = 0;
for (int j = 0; j < n; ++j)
{
if (i == j) continue;
if (CirCrossCir(cir[i],cir[j],p2, p1) < 2) continue;
p1.ang = (p1-cir[i].c).angle();
p2.ang = (p2-cir[i].c).angle();
p1.d = 1;
tp[tn++] = p1;
p2.d = -1;
tp[tn++] = p2;
if (dblcmp(p1.ang - p2.ang) > 0) cnt++;
}
tp[tn++] = point(cir[i].c.x - cir[i].r, cir[i].c.y, PI, -cnt);
tp[tn++] = point(cir[i].c.x - cir[i].r, cir[i].c.y, -PI, cnt);
sort(tp, tp + tn, cmp);
int p, s = cir[i].d + tp[0].d;
for (int j = 1; j < tn; ++j)
{
p = s;
s += tp[j].d;
area[p] += calc(cir[i], tp[j - 1], tp[j]);
}
}
}
bool check( double h)
{
// cout<<"h:"<<h<<" ";
for ( int i = 0 ; i < n ; i++)
{
double l = sqrt(cir[i].c.length2() + h*h);
double r = W/(l*cir[i].Z);
cir[i].r = r;
cir[i].d = 1; //多次,是累加值,记得每次二分都要初始化。
//cir[i].pr();
}
memset(area, 0, sizeof(area));
ms(tp,0);
CirUnion(cir, n);
//去掉重复计算的
for (int i = 1; i <= n; ++i)
{
area[i] -= area[i + 1];
}
//area[i]为重叠了i次的面积
double sum=0;
for ( int i = k ; i <= n ; i++) sum = sum + area[i];
//sum = fabs(sum);
return dblcmp(sum-S)>0;
//tot 为总面积
//double tot = 0;
//for(int i=1; i<=n; i++) tot += area[i];
//printf("%f\n", tot);
}
bool ok;
double bin()
{
double l = 0;
double r = 10000;
while (dblcmp(l-r)<0)
{
double mid = (l+r)*0.5;
//printf("l: %.4f r:%.4f mid:%.4f \n",l,r,mid);
if (check(mid)) l = mid,ok = true;
else r = mid;
}
return l;
}
int main()
{
// freopen("./in.txt", "r", stdin);
int T;
cin>>T;
while (T--)
{
ok = false;
cin>>n>>W>>k>>S;
for ( int i = 0 ; i < n ; i++)
{
cir[i].c.input();
scanf("%lf",&cir[i].Z);
}
double ans =bin();
if (!ok) puts("No solution!");
else
{
if (dblcmp(ans-500)>0) puts("Oops!");
else printf("%.4f\n",ans);
}
}
return 0;
}