对象检测(Object Detection)的目的是”识别对象并给出其在图中的确切位置”,其内容可解构为三部分:
- 识别某个对象(Classification);
- 给出对象在图中的位置(Localization);
- 识别图中所有的目标及其位置(Detection)。
本文将介绍滑动窗口这一方法.
阅读更多记录一些一个没有之前没有接触过caffe/caffe2的人为了添加自定义的op 到caffe2需要做的工作.
首先参考caffe2 tutorial,随便跑个op来试试,不妨以比较简单的 Accumulate_op 为例子.
阅读更多NMS是为了在诸多CV任务如边缘检测,目标检测等,找到局部最大值
其主要思想是先设定一个阈值,然后计算检测框的IOU(所谓IOU,也就是intersection-over-union,指的是相交面积除以相并面积,是来衡量overlap程度的指数)。如果IOU大于阈值,说明overlap过大,我们要通过某种算法来将其剔除。
阅读更多被师兄(同事?)普及了一番实验规范orz...
我还是太年轻了
所谓的一个fc的版本是右边的.一个放着不动,另一个在sequence_len(10)的维度上做ave,然后再expand成原来的维度.如下图.
阅读更多CMC曲线全称是Cumulative Match Characteristic (CMC) curve,也就是累积匹配曲线,同ROC曲线Receiver Operating Characteristic (ROC) curve一样,是模式识别系统,如人脸,指纹,虹膜等的重要评价指标,尤其是在生物特征识别系统中,一般同ROC曲线( 多标签图像分类任务的评价方法-mean average precision(mAP) 以及top x的评价方法)一起给出,能够综合评价出算法的好坏。
阅读更多记录一些常用的...总去查文档也是有点麻烦
*tensor.view 的作用是reshape 比如 a = torch.range(1, 16) 得到一个tensor that has 16 elements from 1 to 16. 在a=a.view(4,4)就得到了一个44的tensor。 需要注意reshape之后元素的个数不能改变(16==44) 参数-1的作用是,我懒得算这一维度应该是多少,(由于元素个数不能改变)所以希望自动被计算。**需要注意的是,只有一个维度可以写-1。 **不过view和reshape有些区别:reshape always copies memory. view never …
阅读更多Reid问题指的是判断一个probe person 是否在被不同的camera捕获的gallery person 中出现。
通常是如下情景:给出一个特定camera下某个特定人的probe image 或者 video sequence,从其他camera处询问这个人的图像,地点,时间戳。
阅读更多