111qqz的小窝

老年咸鱼冲锋!

大数据top K 问题总结(转载)

转自:http://blog.csdn.net/v_july_v/article/details/6279498

 

第一部分、十道海量数据处理面试题

1、海量日志数据,提取出某日访问百度次数最多的那个IP。

首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。

或者如下阐述(雪域之鹰):
算法思想:分而治之+Hash
1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理;
2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)%1024值,把海量IP日志分别存储到1024个小文件中。这样,每个小文件最多包含4MB个IP地址;
3.对于每一个小文件,可以构建一个IP为key,出现次数为value的Hash map,同时记录当前出现次数最多的那个IP地址;
4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP;

2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。
    假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G。

典型的Top K算法,还是在这篇文章里头有所阐述,详情请参见:十一、从头到尾彻底解析Hash表算法。

文中,给出的最终算法是:
第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计(之前写成了排序,特此订正。July、2011.04.27);
第二步、借助堆这个数据结构,找出Top K,时间复杂度为N‘logK。
即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比所以,我们最终的时间复杂度是:O(N) + N’*O(logK),(N为1000万,N’为300万)。ok,更多,详情,请参考原文。

或者:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。
3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。

方案:顺序读文件中,对于每个词x,取hash(x)%5000,然后按照该值存到5000个小文件(记为x0,x1,…x4999)中。这样每个文件大概是200k左右。

如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。
对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100个词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。
4、有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。

还是典型的TOP K算法,解决方案如下:
方案1:
顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。

找一台内存在2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件(记为)。

对这10个文件进行归并排序(内排序与外排序相结合)。

方案2:
一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。

方案3:
与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapReduce),最后再进行合并。
5、 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?

方案1:可以估计每个文件安的大小为5G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。

遍历文件a,对每个url求取hash(url)%1000,然后根据所取得的值将url分别存储到1000个小文件(记为a0,a1,…,a999)中。这样每个小文件的大约为300M。

遍历文件b,采取和a相同的方式将url分别存储到1000小文件(记为b0,b1,…,b999)。这样处理后,所有可能相同的url都在对应的小文件(a0vsb0,a1vsb1,…,a999vsb999)中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。

求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。

Bloom filter日后会在本BLOG内详细阐述。
6、在2.5亿个整数中找出不重复的整数,注,内存不足以容纳这2.5亿个整数。

方案1:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^32 * 2 bit=1 GB内存,还可以接受。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。

方案2:也可采用与第1题类似的方法,进行划分小文件的方法。然后在小文件中找出不重复的整数,并排序。然后再进行归并,注意去除重复的元素。
7、腾讯面试题:给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?

与上第6题类似,我的第一反应时快速排序+二分查找。以下是其它更好的方法:
方案1:oo,申请512M的内存,一个bit位代表一个unsigned int值。读入40亿个数,设置相应的bit位,读入要查询的数,查看相应bit位是否为1,为1表示存在,为0表示不存在。

dizengrong:
方案2:这个问题在《编程珠玑》里有很好的描述,大家可以参考下面的思路,探讨一下:
又因为2^32为40亿多,所以给定一个数可能在,也可能不在其中;
这里我们把40亿个数中的每一个用32位的二进制来表示
假设这40亿个数开始放在一个文件中。

然后将这40亿个数分成两类:
1.最高位为0
2.最高位为1
并将这两类分别写入到两个文件中,其中一个文件中数的个数<=20亿,而另一个>=20亿(这相当于折半了);
与要查找的数的最高位比较并接着进入相应的文件再查找

再然后把这个文件为又分成两类:
1.次最高位为0
2.次最高位为1

并将这两类分别写入到两个文件中,其中一个文件中数的个数<=10亿,而另一个>=10亿(这相当于折半了);
与要查找的数的次最高位比较并接着进入相应的文件再查找。
…….
以此类推,就可以找到了,而且时间复杂度为O(logn),方案2完。

附:这里,再简单介绍下,位图方法:
使用位图法判断整形数组是否存在重复
判断集合中存在重复是常见编程任务之一,当集合中数据量比较大时我们通常希望少进行几次扫描,这时双重循环法就不可取了。

位图法比较适合于这种情况,它的做法是按照集合中最大元素max创建一个长度为max+1的新数组,然后再次扫描原数组,遇到几就给新数组的第几位置上1,如遇到5就给新数组的第六个元素置1,这样下次再遇到5想置位时发现新数组的第六个元素已经是1了,这说明这次的数据肯定和以前的数据存在着重复。这种给新数组初始化时置零其后置一的做法类似于位图的处理方法故称位图法。它的运算次数最坏的情况为2N。如果已知数组的最大值即能事先给新数组定长的话效率还能提高一倍。

欢迎,有更好的思路,或方法,共同交流。
8、怎么在海量数据中找出重复次数最多的一个?

方案1:先做hash,然后求模映射为小文件,求出每个小文件中重复次数最多的一个,并记录重复次数。然后找出上一步求出的数据中重复次数最多的一个就是所求(具体参考前面的题)。
9、上千万或上亿数据(有重复),统计其中出现次数最多的钱N个数据。

方案1:上千万或上亿的数据,现在的机器的内存应该能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计次数。然后就是取出前N个出现次数最多的数据了,可以用第2题提到的堆机制完成。
10、一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。

方案1:这题是考虑时间效率。用trie树统计每个词出现的次数,时间复杂度是O(n*le)(le表示单词的平准长度)。然后是找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(n*lg10)。所以总的时间复杂度,是O(n*le)与O(n*lg10)中较大的哪一个。
附、100w个数中找出最大的100个数。

方案1:在前面的题中,我们已经提到了,用一个含100个元素的最小堆完成。复杂度为O(100w*lg100)。

方案2:采用快速排序的思想,每次分割之后只考虑比轴大的一部分,知道比轴大的一部分在比100多的时候,采用传统排序算法排序,取前100个。复杂度为O(100w*100)。

方案3:采用局部淘汰法。选取前100个元素,并排序,记为序列L。然后一次扫描剩余的元素x,与排好序的100个元素中最小的元素比,如果比这个最小的要大,那么把这个最小的元素删除,并把x利用插入排序的思想,插入到序列L中。依次循环,知道扫描了所有的元素。复杂度为O(100w*100)。

致谢:http://www.cnblogs.com/youwang/

 

第二部分、十个海量数据处理方法大总结

ok,看了上面这么多的面试题,是否有点头晕。是的,需要一个总结。接下来,本文将简单总结下一些处理海量数据问题的常见方法,而日后,本BLOG内会具体阐述这些方法。

下面的方法全部来自http://hi.baidu.com/yanxionglu/blog/博客,对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎讨论。

一、Bloom filter

适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集

基本原理及要点:
对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。

还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。

举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。

注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。

扩展:
Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。

问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?

根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。
二、Hashing

适用范围:快速查找,删除的基本数据结构,通常需要总数据量可以放入内存

基本原理及要点:
hash函数选择,针对字符串,整数,排列,具体相应的hash方法。
碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing。

扩展:
d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing。2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h2。在存储一个新的key时,同时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key存储在左边的T1子表中,2-left也由此而来。在查找一个key时,必须进行两次hash,同时查找两个位置。

问题实例:
1).海量日志数据,提取出某日访问百度次数最多的那个IP。
IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。
三、bit-map

适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下

基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码

扩展:bloom filter可以看做是对bit-map的扩展

问题实例:
1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。
8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。
2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map。
四、堆

适用范围:海量数据前n大,并且n比较小,堆可以放入内存

基本原理及要点:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我们比较当前元素与最大堆里的最大元素,如果它小于最大元素,则应该替换那个最大元素。这样最后得到的n个元素就是最小的n个。适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很高。

扩展:双堆,一个最大堆与一个最小堆结合,可以用来维护中位数。

问题实例:
1)100w个数中找最大的前100个数。
用一个100个元素大小的最小堆即可。

 

五、双层桶划分—-其实本质上就是【分而治之】的思想,重在“分”的技巧上!

适用范围:第k大,中位数,不重复或重复的数字
基本原理及要点:因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。可以通过多次缩小,双层只是一个例子。

扩展:
问题实例:
1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。
有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。

2).5亿个int找它们的中位数。
这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。

实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定区域的第几大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。
六、数据库索引

适用范围:大数据量的增删改查

基本原理及要点:利用数据的设计实现方法,对海量数据的增删改查进行处理。
七、倒排索引(Inverted index)

适用范围:搜索引擎,关键字查询

基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。

以英文为例,下面是要被索引的文本:
T0 = “it is what it is”
T1 = “what is it”
T2 = “it is a banana”

我们就能得到下面的反向文件索引:

“a”:      {2}
“banana”: {2}
“is”:     {0, 1, 2}
“it”:     {0, 1, 2}
“what”:   {0, 1}

检索的条件”what”,”is”和”it”将对应集合的交集。

正向索引开发出来用来存储每个文档的单词的列表。正向索引的查询往往满足每个文档有序频繁的全文查询和每个单词在校验文档中的验证这样的查询。在正向索引中,文档占据了中心的位置,每个文档指向了一个它所包含的索引项的序列。也就是说文档指向了它包含的那些单词,而反向索引则是单词指向了包含它的文档,很容易看到这个反向的关系。

扩展:
问题实例:文档检索系统,查询那些文件包含了某单词,比如常见的学术论文的关键字搜索。
八、外排序

适用范围:大数据的排序,去重

基本原理及要点:外排序的归并方法,置换选择败者树原理,最优归并树

扩展:

问题实例:
1).有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词。

这个数据具有很明显的特点,词的大小为16个字节,但是内存只有1m做hash有些不够,所以可以用来排序。内存可以当输入缓冲区使用。
九、trie树

适用范围:数据量大,重复多,但是数据种类小可以放入内存

基本原理及要点:实现方式,节点孩子的表示方式

扩展:压缩实现。

问题实例:
1).有10个文件,每个文件1G,每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序。
2).1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。请问怎么设计和实现?
3).寻找热门查询:查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个,每个不超过255字节。
十、分布式处理 mapreduce

适用范围:数据量大,但是数据种类小可以放入内存

基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。

扩展:
问题实例:
1).The canonical example application of MapReduce is a process to count the appearances of
each different word in a set of documents:
2).海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。
3).一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数的中数(median)?
经典问题分析
上千万or亿数据(有重复),统计其中出现次数最多的前N个数据,分两种情况:可一次读入内存,不可一次读入。

可用思路:trie树+堆,数据库索引,划分子集分别统计,hash,分布式计算,近似统计,外排序

所谓的是否能一次读入内存,实际上应该指去除重复后的数据量。如果去重后数据可以放入内存,我们可以为数据建立字典,比如通过 map,hashmap,trie,然后直接进行统计即可。当然在更新每条数据的出现次数的时候,我们可以利用一个堆来维护出现次数最多的前N个数据,当然这样导致维护次数增加,不如完全统计后在求前N大效率高。

如果数据无法放入内存。一方面我们可以考虑上面的字典方法能否被改进以适应这种情形,可以做的改变就是将字典存放到硬盘上,而不是内存,这可以参考数据库的存储方法。

当然还有更好的方法,就是可以采用分布式计算,基本上就是map-reduce过程,首先可以根据数据值或者把数据hash(md5)后的值,将数据按照范围划分到不同的机子,最好可以让数据划分后可以一次读入内存,这样不同的机子负责处理各种的数值范围,实际上就是map。得到结果后,各个机子只需拿出各自的出现次数最多的前N个数据,然后汇总,选出所有的数据中出现次数最多的前N个数据,这实际上就是reduce过程。

实际上可能想直接将数据均分到不同的机子上进行处理,这样是无法得到正确的解的。因为一个数据可能被均分到不同的机子上,而另一个则可能完全聚集到一个机子上,同时还可能存在具有相同数目的数据。比如我们要找出现次数最多的前100个,我们将1000万的数据分布到10台机器上,找到每台出现次数最多的前 100个,归并之后这样不能保证找到真正的第100个,因为比如出现次数最多的第100个可能有1万个,但是它被分到了10台机子,这样在每台上只有1千个,假设这些机子排名在1000个之前的那些都是单独分布在一台机子上的,比如有1001个,这样本来具有1万个的这个就会被淘汰,即使我们让每台机子选出出现次数最多的1000个再归并,仍然会出错,因为可能存在大量个数为1001个的发生聚集。因此不能将数据随便均分到不同机子上,而是要根据hash 后的值将它们映射到不同的机子上处理,让不同的机器处理一个数值范围。

而外排序的方法会消耗大量的IO,效率不会很高。而上面的分布式方法,也可以用于单机版本,也就是将总的数据根据值的范围,划分成多个不同的子文件,然后逐个处理。处理完毕之后再对这些单词的及其出现频率进行一个归并。实际上就可以利用一个外排序的归并过程。

另外还可以考虑近似计算,也就是我们可以通过结合自然语言属性,只将那些真正实际中出现最多的那些词作为一个字典,使得这个规模可以放入内存。

ok,更多请参见本文总结:教你如何迅速秒杀掉:99%的海量数据处理面试题。以上有任何问题,欢迎指正。谢谢大家。

局部敏感哈希算法(Locality Sensitive Hashing)初探

前言:

其实有了前文simhash算法的基础,局部敏感hash算法已经不存在理解上的问题了吧。。。毕竟simhash算法应该是局部敏感哈希算法的一种。。所以我就直接转载几篇我认为比较好的文档结合一下好了。。。会把比较重要的概念或者定义标记重点。

局部敏感哈希(Locality Sensitive Hashing,LSH)算法是我在前一段时间找工作时接触到的一种衡量文本相似度的算法。局部敏感哈希是近似最近邻搜索算法中最流行的一种,它有坚实的理论依据并且在高维数据空间中表现优异。它的主要作用就是从海量的数据中挖掘出相似的数据,可以具体应用到文本相似度检测、网页搜索等领域。

1. 基本思想

局部敏感哈希的基本思想类似于一种空间域转换思想,LSH算法基于一个假设,如果两个文本在原有的数据空间是相似的,那么分别经过哈希函数转换以后的它们也具有很高的相似度;相反,如果它们本身是不相似的,那么经过转换后它们应仍不具有相似性。

哈希函数,大家一定都很熟悉,那么什么样的哈希函数可以具有上述的功能呢,可以保持数据转化前后的相似性?当然,答案就是局部敏感哈希。

回到顶部

2. 局部敏感哈希LSH

局部敏感哈希的最大特点就在于保持数据的相似性,我们通过一个反例来具体介绍一下。

假设一个哈希函数为Hash(x) = x%8,那么我们现在有三个数据分别为255、257和1023,我们知道255和257本身在数值上具有很小的差距,也就是说它们在三者中比较相似。我们将上述的三个数据通过Hash函数转换:

Hash(255) = 255%8 = 7;

Hash(257) = 257%8 = 1;

Hash(1023) = 1023%8 = 7;

我们通过上述的转换结果可以看出,本身很相似的255和257在转换以后变得差距很大,而在数值上差很多的255和1023却对应相同的转换结果。从这个例子我们可以看出,上述的Hash函数从数值相似度角度来看,它不是一个局部敏感哈希,因为经过它转换后的数据的相似性丧失了。

我们说局部敏感哈希要求能够保持数据的相似性,那么很多人怀疑这样的哈希函数是否真的存在。我们这样去思考这样一个极端的条件,假设一个局部敏感哈希函数具有10个不同的输出值,而现在我们具有11个完全没有相似度的数据,那么它们经过这个哈希函数必然至少存在两个不相似的数据变为了相似数据。从这个假设中,我们应该意识到局部敏感哈希是相对的,而且我们所说的保持数据的相似度不是说保持100%的相似度,而是保持最大可能的相似度

对于局部敏感哈希“保持最大可能的相似度”的这一点,我们也可以从数据降维的角度去考虑。数据对应的维度越高,信息量也就越大,相反,如果数据进行了降维,那么毫无疑问数据所反映的信息必然会有损失。哈希函数从本质上来看就是一直在扮演数据降维的角色。

回到顶部

 3. 文档相似度计算

我们通过利用LSH来实现文档的相似度计算这个实例来介绍一下LSH的具体用法。

  3.1 Shingling

假设现在有4个网页,我们将它们分别进行Shingling(将待查询的字符串集进行映射,映射到一个集合里,如字符串“abcdeeee”, 映射到集合”(a,b,c,d,e)”, 注意集合中元素是无重复的,这一步骤就叫做Shingling, 意即构建文档中的短字符串集合,即shingle集合。),得到如下的特征矩阵:

其中“1”代表对应位置的Shingles在文档中出现过,“0”则代表没有出现过。

在衡量文档的相似度中,我们有很多的方法去完成,比如利用欧式距离、编辑距离、余弦距离、Jaccard距离等来进行相似度的度量。在这里我们运用Jaccard相似度。接下来我们就要去找一种哈希函数,使得在hash后尽量还能保持这些文档之间的Jaccard相似度,即:

我们的目标就是找到这样一种哈希函数,如果原来文档的Jaccard相似度高,那么它们的hash值相同的概率高,如果原来文档的Jaccard相似度低,那么它们的hash值不相同的概率高,我们称之为Min-hashing(最小哈希)。

  3.2 Min-hashing

Min-hashing定义为:特征矩阵按行进行一个随机的排列后,第一个列值为1的行的行号。举例说明如下,假设之前的特征矩阵按行进行的一个随机排列如下:

元素 S1 S2 S3 S4
0 0 1 0
成功 0 0 1 1
1 0 0 0
减肥 1 0 1 1
0 1 0 1

最小哈希值:h(S1)=3,h(S2)=5,h(S3)=1,h(S4)=2.

为什么定义最小hash?事实上,两列的最小hash值就是这两列的Jaccard相似度的一个估计,换句话说,两列最小hash值同等的概率与其相似度相等,即P(h(Si)=h(Sj)) = sim(Si,Sj)。为什么会相等?我们考虑Si和Sj这两列,它们所在的行的所有可能结果可以分成如下三类:

(1)A类:两列的值都为1;

(2)B类:其中一列的值为0,另一列的值为1;

(3)C类:两列的值都为0.

特征矩阵相当稀疏,导致大部分的行都属于C类,但只有A、B类行的决定sim(Si,Sj),假定A类行有a个,B类行有b个,那么sim(si,sj)=a/(a+b)。现在我们只需要证明对矩阵行进行随机排列,两个的最小hash值相等的概率P(h(Si)=h(Sj))=a/(a+b),如果我们把C类行都删掉,那么第一行不是A类行就是B类行,如果第一行是A类行那么h(Si)=h(Sj),因此P(h(Si)=h(Sj))=P(删掉C类行后,第一行为A类)=A类行的数目/所有行的数目=a/(a+b),这就是最小hash的神奇之处。

Min-hashing的具体做法可以根据如下进行表述:

返回到我们的实例,我们首先生成一堆随机置换,把特征矩阵的每一行进行置换,然后hash function就定义为把一个列C hash成一个这样的值:就是在置换后的列C上,第一个值为1的行的行号。如下图所示:

  图中展示了三个置换,就是彩色的那三个,我现在解释其中的一个,另外两个同理。比如现在看蓝色的那个置换,置换后的Signature Matrix为:
  然后看第一列的第一个是1的行是第几行,是第2行,同理再看二三四列,分别是1,2,1,因此这四列(四个document)在这个置换下,被哈希成了2,1,2,1,就是右图中的蓝色部分,也就相当于每个document现在是1维。再通过另外两个置换然后再hash,又得到右边的另外两行,于是最终结果是每个document从7维降到了3维。我们来看看降维后的相似度情况,就是右下角那个表,给出了降维后的document两两之间的相似性。可以看出,还是挺准确的,回想一下刚刚说的:希望原来documents的Jaccard相似度高,那么它们的hash值相同的概率高,如果原来documents的Jaccard相似度低,那么它们的hash值不相同的概率高,如何进行概率上的保证?Min-Hashing有个惊人的性质:
  就是说,对于两个document,在Min-Hashing方法中,它们hash值相等的概率等于它们降维前的Jaccard相似度。
  注:在上述例子中,我们还可以采取欧氏距离等相似度量来替代Jaccard相似度,这时候LSH相应的策略也需要进行改变,从而使得最后的hash值等于降为前的相似度。

局部敏感hash的一般定义

局部敏感hash实质上是满足一定条件的函数簇,上面介绍只是一个基于Jaccard的例子,实际上还有面向其他距离的LSH。

令d1<d2是定义在距离测定d下得两个距离值,如果一个函数族的每一个函数f满足:

(1)如果d(x,y)<=d1,则f(x)=f(y)的概率至少为p1,即P(f(x)=f(y)) >= p1;

(2)如果d(x,y)>=d2,则f(x)=f(y)的概率至多为p2,即p(f(x)=f(y)) <= p2.

那么称F为(d1,d2,p1,p2)-敏感的函数族。实际上我们之前的最小hash函数族是(d1,d2,1-d1,1-d2)-敏感的。

局部敏感hash族还可以进行放大处理,已获得更高的准确率和召回率,当然也有面向其他距离的LSH。本文的东西全部源自参考文献的课本,有兴趣可以好好读一下这本书。

 

 

 

文本相似度判断-simhash算法学习笔记

先放原始论文。。。以此表达对这个算法的敬意orz

论文链接

 

问题引出:

那天百度一面,frog学姐问了我如何判断两篇新闻稿的相似度的问题….我满篇口胡…也只是回答了一些诸如从图片上考虑。。或者去掉stop word之后得到特征向量然后计算余弦值之类得到传统想法。。。

今天看到了google在用的网页去重的算法(?。。。感觉好神奇。。。准备面试到现在,第一个让我感到惊异而不是套路的算法orz

对于处理大规模文本(500字以上吧)的时候效果很好。。。但是算法思想却又非常简单。

这才是算法的美丽之处吧。。。。leetcode上的那些纱布技巧也好意思叫算法。。。?

网页去重,其实本质还是网页相似度的计算….首先是两篇,之后还可以推广到海量数据。

算法初探:

simhash算法。。。字面上也可以看出。。是一种hash算法。。。那么它和一般的hash有什么不同呢?

最大的问题在于。。。传统hash的设计目的之一是使得映射后的值的分布尽可能均匀…对于同样的key会有同样的value,但是每当key有轻微的变化的时候,value就会千差万别。

举个例子:

“你妈妈喊你回家吃饭哦,回家罗回家罗” 和 “你妈妈叫你回家吃饭啦,回家罗回家罗”。

通过simhash计算结果为:

1000010010101101111111100000101011010001001111100001001011001011

1000010010101101011111100000101011010001001111100001101010001011

通过 hashcode计算为:

1111111111111111111111111111111110001000001100110100111011011110

1010010001111111110010110011101

也就是说。。。没办法通过hash之后得到的值的差异,去分析key的相似程度。

而simhash就是通过某种方法进行hash,使得hash之后得到的value可以反应key的相似度。

流程

simhash算法分为5个步骤:分词、hash、加权、合并、降维,具体过程如下所述:

  • 分词
    • 给定一段语句,进行分词,得到有效的特征向量,然后为每一个特征向量设置1-5等5个级别的权重(如果是给定一个文本,那么特征向量可以是文本中的词,其权重可以是这个词出现的次数)。例如给定一段语句:“CSDN博客结构之法算法之道的作者July”,分词后为:“CSDN 博客 结构 之 法 算法 之 道 的 作者 July”,然后为每个特征向量赋予权值:CSDN(4) 博客(5) 结构(3) 之(1) 法(2) 算法(3) 之(1) 道(2) 的(1) 作者(5) July(5),其中括号里的数字代表这个单词在整条语句中的重要程度,数字越大代表越重要。
  • hash
    • 通过hash函数计算各个特征向量的hash值,hash值为二进制数01组成的n-bit签名。比如“CSDN”的hash值Hash(CSDN)为100101,“博客”的hash值Hash(博客)为“101011”。就这样,字符串就变成了一系列数字。
  • 加权
    • 在hash值的基础上,给所有特征向量进行加权,即W = Hash * weight,且遇到1则hash值和权值正相乘,遇到0则hash值和权值负相乘。例如给“CSDN”的hash值“100101”加权得到:W(CSDN) = 100101 4 = 4 -4 -4 4 -4 4,给“博客”的hash值“101011”加权得到:W(博客)=101011 5 = 5 -5 5 -5 5 5,其余特征向量类似此般操作。
  • 合并
    • 将上述各个特征向量的加权结果累加,变成只有一个序列串。拿前两个特征向量举例,例如“CSDN”的“4 -4 -4 4 -4 4”和“博客”的“5 -5 5 -5 5 5”进行累加,得到“4+5 -4+-5 -4+5 4+-5 -4+5 4+5”,得到“9 -9 1 -1 1”。
  • 降维
    • 对于n-bit签名的累加结果,如果大于0则置1,否则置0,从而得到该语句的simhash值,最后我们便可以根据不同语句simhash的海明距离来判断它们的相似度。例如把上面计算出来的“9 -9 1 -1 1 9”降维(某位大于0记为1,小于0记为0),得到的01串为:“1 0 1 0 1 1”,从而形成它们的simhash签名。

每篇文档得到SimHash签名值后,接着计算两个签名的海明距离即可。根据经验值,对64位的 SimHash值,海明距离在3以内的可认为相似度比较高。

  • 海明距离的求法:异或时,只有在两个比较的位不同时其结果是1 ,否则结果为0,两个二进制“异或”后得到1的个数即为海明距离的大小。

 

推广到海量数据:

关键是,如何将其扩展到海量数据呢?譬如如何在海量的样本库中查询与其海明距离在3以内的记录呢?

  • 一种方案是查找待查询文本的64位simhash code的所有3位以内变化的组合
    • 大约需要四万多次的查询。
  • 另一种方案是预生成库中所有样本simhash code的3位变化以内的组合
    • 大约需要占据4万多倍的原始空间。

这两种方案,要么时间复杂度高,要么空间复杂度复杂,能否有一种方案可以达到时空复杂度的绝佳平衡呢?答案是肯定的:

  • 我们可以把 64 位的二进制simhash签名均分成4块,每块16位。根据鸽巢原理(也称抽屉原理),如果两个签名的海明距离在 3 以内,它们必有一块完全相同。如下图所示:
  • 然后把分成的4 块中的每一个块分别作为前16位来进行查找,建倒排索引。

具体如下图所示:

如此,如果样本库中存有2^34(差不多10亿)的simhash签名,则每个table返回2^(34-16)=262144个候选结果,大大减少了海明距离的计算成本。

  • 假设数据是均匀分布,16位的数据,产生的像限为2^16个,则平均每个像限分布的文档数则为2^34/2^16 = 2^(34-16)) ,四个块返回的总结果数为 4* 262144 (大概 100 万)。
    • 这样,原本需要比较10亿次,经过索引后,大概只需要处理100万次。

 

 

参考资料:

 

simhash算法具体流程

海量数据相似度计算之simhash和海明距离

simhash算法

基于局部敏感哈希的协同过滤算法之simHash算法

 

蓄水池抽样算法概述(Reservoir Sampling Algorithm)[转载]

面京东被这个问题卡了QAQ,来补补这方面的课。

转自:链接

蓄水池抽样算法随机算法的一种,用来从 N 个样本中随机选择 K 个样本,其中 N 非常大(以至于 N 个样本不能同时放入内存)或者 N 是一个未知数。其时间复杂度为 O(N),包含下列步骤 (假设有一维数组 S, 长度未知,需要从中随机选择 k 个元素, 数组下标从 1 开始), 伪代码如下:

算法首先创建一个长度为 k 的数组(蓄水池)用来存放结果,初始化为 S 的前 k 个元素。然后从 k+1 个元素开始迭代直到数组结束,在 S 的第 i 个元素,算法生成一个随机数 j[1,i]j∈[1,i], 如果 j <= k, 那么蓄水池的第 j 个元素被替换为 S 的第 i 个元素。

算法的正确性证明

定理:该算法保证每个元素以 k / n 的概率被选入蓄水池数组。

证明:首先,对于任意的 i,第 i 个元素进入蓄水池的概率为 k / i;而在蓄水池内每个元素被替换的概率为 1 / k; 因此在第 i 轮第j个元素被替换的概率为 (k / i ) * (1 / k) = 1 / i。 接下来用数学归纳法来证明,当循环结束时每个元素进入蓄水池的概率为 k / n.

假设在 (i-1) 次迭代后,任意一个元素进入 蓄水池的概率为 k / (i-1)。有上面的结论,在第 i 次迭代时,该元素被替换的概率为 1 / i, 那么其不被替换的概率则为 1 – 1/i = (i-1)/i;在第i 此迭代后,该元素在蓄水池内的概率为 k / (i-1) * (i-1)/i = k / i. 归纳部分结束。

因此当循环结束时,每个元素进入蓄水池的概率为 k / n. 命题得证。

 

算法的C++实现

实现部分比较简单,关键点也有详细的注释,为了验证算法的正确性,对[1,10]的数组,随机选择前五个进行验证,运行10000次后,每个数字出现的频率应该是基本相等的,算法的运行结果也证实了这一点,如下图所示。

算法的局限性

蓄水池算法的基本假设是总的样本数很多,不能放入内存,暗示了选择的样本数 k 是一个与 n 无关的常数。然而在实际的应用中,k 常常与 n 相关,比如我们想要随机选择1/3 的样本 (k = n / 3),这时候就需要别的算法或者分布式的算法。

 参考文献

【1】 Wikipedia:Reservoir Sampling

 

 

粤ICP备18103363