写在前面
主要是需要在jetson nano做模型转换,来记录下踩的坑 目前有两条路径,一条是我们现有的转换路径,也就是pytorch->onnx(->caffe)->trt的路径 在这条路径上踩了比较多的坑,最终暂时放弃,最直接的原因是cudnn8.0升级接口发生改动,编译caffe遇到较多问题 这里其实仍然采用了两条平行的路径,一条是直接在nano上构建环境,另外一种是基于docker(包括构建交叉编译环境用于加快编译速度)
阅读更多
主要是需要在jetson nano做模型转换,来记录下踩的坑 目前有两条路径,一条是我们现有的转换路径,也就是pytorch->onnx(->caffe)->trt的路径 在这条路径上踩了比较多的坑,最终暂时放弃,最直接的原因是cudnn8.0升级接口发生改动,编译caffe遇到较多问题 这里其实仍然采用了两条平行的路径,一条是直接在nano上构建环境,另外一种是基于docker(包括构建交叉编译环境用于加快编译速度)